TY - JOUR A1 - Flores, E. A1 - Idrees, F. A1 - Moussay, P. A1 - Viallon, J. A1 - Wielgosz, R. A1 - Fernández, T. A1 - Ramírez, S. A1 - Rojo, A. A1 - Shinji, U. A1 - Waldén, J. A1 - Sega, M. A1 - Sang-Hyub, O. A1 - Macé, T. A1 - Couret, C. A1 - Qiao, H. A1 - Smeulders, D. A1 - Guenther, F.R. A1 - Thorn, W.J. III A1 - Tshilongo, J. A1 - Ntsasa, N.G. A1 - Stovcík, V. A1 - Valková, M. A1 - Konopelko, L. A1 - Gromova, E. A1 - Nieuwenkamp, G. A1 - Wessel, R. M. A1 - Milton, M. A1 - Harling, A. A1 - Vargha, G. A1 - Tuma, Dirk A1 - Kohl, Anka A1 - Schulz, Gert T1 - Final report on international comparison CCQM-K74: Nitrogen dioxide, 10 µmol/mol N2 - There is a high international priority attached to activities which reduce NOx in the atmosphere. The current level of permitted emissions is typically between 50 µmol/mol and 100 µmol/mol, but lower values are expected in the future. Currently, ambient air quality monitoring regulations also require the measurement of NOx mole fractions as low as 0.2 µmol/mol. The production of accurate standards at these levels of mole fractions requires either dilution of a stable higher concentration gas standard or production by a dynamic technique, for example one based on permeation tubes. The CCQM-K74 key comparison was designed to evaluate the level of comparability of National Metrology Institutes' measurement capabilities and standards for nitrogen dioxide (NO2) at a nominal mole fraction of 10 µmol/mol. The measurements of this key comparison took place from June 2009 to May 2010. Seventeen laboratories took part in this comparison coordinated by the BIPM and VSL. The key comparison reference value was based on BIPM measurement results, and the standard measurement uncertainty of the reference value was 0.042 µmol/mol. This key comparison demonstrated that the results of the majority of the participants agreed within limits of ±3% relative to the reference value. The results of only one laboratory lay significantly outside these limits. Likewise this comparison made clear that a full interpretation of the results of the comparison needed to take into account the presence of nitric acid (in the range 100 nmol/mol to 350 nmol/mol) in the cylinders circulated as part of the comparison, as well as the possible presence of nitric acid in the primary standards used by participating laboratories. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA). DatesIssue 1A (Technical Supplement 2012) KW - Ringversuch KW - NO2 KW - Spurenverunreinigungen KW - Meßverfahren PY - 2012 DO - https://doi.org/10.1088/0026-1394/49/1A/08005 SN - 0026-1394 SN - 1681-7575 VL - 49 IS - 08005 SP - 1 EP - 117 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-25927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Jakubowski, Norbert A1 - Müller, L. A1 - Traub, Heike A1 - Esteban-Fernández, D. A1 - Panne, Ulrich A1 - Herrmann, Antje A1 - Schellenberger, E. A1 - Theuring, F. A1 - Kneipp, Janina T1 - Imaging by laser ablation ICP-MS N2 - ICP-MS is a well-established analytical method which excels by high accuracy, high dynamic range and extremely low limits of detection for most metals. Furthermore ICP-MS offers a very high multi-element coverage so that many elements of the periodic table can be detected simultaneously. In this series of lectures, we want to focus on the historical developments, fundamentals, instrumentation and novel applications of ICP-MS in the life and material sciences. T2 - Ringvorlesung Analytik CY - Humboldt-Universität zu Berlin DA - 23.06.2017 KW - Laser ablation ICP-MS KW - Bio-Imaging PY - 2017 AN - OPUS4-40757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moreno-Gordaliza, E. A1 - Giesen, Charlotte A1 - Lázaro, A. A1 - Esteban-Fernández, D. A1 - Humanes, B. A1 - Canas, B. A1 - Panne, Ulrich A1 - Tejedor, A. A1 - Jakubowski, Norbert A1 - Gómez-Gómez, M.M. T1 - Elemental bioimaging in kidney by LA-ICP-MS as a tool to study nephrotoxicity and renal protective strategies in cisplatin therapies N2 - A laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS)-based methodology is presented for Pt, Cu, and Zn bioimaging on whole kidney 3 µm sagittal sections from rats treated with pharmacological doses of cisplatin, which were sacrificed once renal damage had taken place. Pt turned out to accumulate in the kidney cortex and corticomedullary junction, corresponding to areas where the proximal tubule S3 segments (the most sensitive cells to cisplatin nephrotoxicity) are located. This demonstrates the connection between platinum accumulation and renal damage proved by histological examination of HE-stained sections and evaluation of serum and urine biochemical parameters. Cu and Zn distribution maps revealed a significant displacement in cells by Pt, as compared to control tissues. A dramatic decrease in the Pt accumulation in the cortex was observed when cilastatin was coadministered with cisplatin, which can be related to its nephroprotective effect. Excellent imaging reproducibility, sensitivity (LOD 50 fg), and resolution (down to 8 µm) were achieved, demonstrating that LA–ICP–MS can be applied as a microscopic metal detector at cellular level in certain tissues. A simple and quick approach for the estimation of Pt tissue levels was proposed, based on tissue spiking. PY - 2011 DO - https://doi.org/10.1021/ac201933x SN - 0003-2700 SN - 1520-6882 VL - 83 IS - 20 SP - 7933 EP - 7940 PB - American Chemical Society CY - Washington, DC AN - OPUS4-24965 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schreiner, V. C. A1 - Fernandez, D. A1 - Vermeirssen, E. L. M. A1 - Bandow, Nicole A1 - Munoz, K. A1 - Schäfer, R. B. T1 - Corrigendum to “Calibration and field application of passive sampling for episodic exposure to polar organic pesticides in streams” [Environ. Pollut. 194 (2014) 196-202] N2 - The authors regret that the sampling rates were miscalculated as a result of flaws in the R script. Using a R script algorithm (Schreiner et al., 2020) sampling rates changed up to 45% (Table 1). KW - Passive sampling KW - Pesticides PY - 2020 DO - https://doi.org/10.1016/j.envpol.2020.115335 SN - 0269-7491 VL - 265 IS - Part B SP - 115335 EP - 115335 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-51227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fernandez-Poulussen, D. A1 - Hodoroaba, Vasile-Dan A1 - Drobne, D. A1 - Novak, S. A1 - Kranjc, E. A1 - Pellegrino, F. A1 - Gullumian, M. A1 - Jones, E. A1 - Hardy, B. A1 - Valsami-Jones, E. A1 - Jurkschat, K. A1 - van der Zande, M. T1 - Holistic, reliable and practical Characterization Framework for Graphene Family Materials, a correlated approach including Imaging based techniques N2 - ACCORDs is an Horizon Europe project working in the development of an imaging-based characterization framework (ACCORDs framework) for the holistic correlative assessment of Graphene Family Materials (GFMs) as a representative of 2D nanomaterials (NMs) to assess and predict 2D NMs health and environmental risks. The ACCORDs framework will operationalise safe and sustainable by design (SSbD) strategies proposed in past or ongoing H2020 projects or within OECD by correlating low-, medium-, and high-resolution physico-chemical-biological imaging-based methods with non-imaging methods in a tiered approach. ACCORDs will deliver the ACCORDs framework and user guidance, new imaging-based characterisation methods, reference in vitro tests, new reference 2D NMs for different matrices, a new minimum information reporting guideline for FAIR data sharing and reuse of images as well as an atlas with reference images for diagnostics of compromised safety of GFMs/GFM products. The new guidelines and standard proposals will be submitted to standardisation bodies to allow creation of regulatory ready products. The novelty of ACCORDs is in translating the principles of medical imaging-based diagnostics to 2D material hazard diagnostics. ACCORDs will accelerate industrial sectors in the area of aviation, marine construction, drone production, flexible electronics, photovoltaics, photocatalytics and print inks-based sensors. The value ACCORDs proposes to the graphene industry are practical, easy, imaging-based tools for GFM quality monitoring next to the production line with a possibility to be correlated with advanced highresolution imaging characterization methods in case hazard i.e. deviation from controls (benchmark values) are diagnosed. The ACCORDs framework and tools will contribute to the European Green Deal by addressing the topic: “Graphene: Europe in the lead” and to a new European strategy on standardization, released on 2nd February, 2022. T2 - MaterialsWeek 2024 CY - Limassol, Cyprus DA - 17.06.2024 KW - Graphene KW - Graphene-related 2D materials KW - SSbD KW - Imaging KW - ACCORDs PY - 2024 AN - OPUS4-60573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -