TY - JOUR A1 - Alder-Rangel, A. A1 - Idnurm, A. A1 - Brand, A. A1 - Brown, A. A1 - Gorbushina, Anna A1 - Kelliher, C. A1 - Campos, C. A1 - Levin, D. A1 - Bell-Pedersen, D. A1 - Dadachova, E. A1 - Bauer, F. A1 - Gadd, G. A1 - Braus, G. A1 - Braga, G. A1 - Brancini, G. A1 - Walker, G. A1 - Druzhinina, I. A1 - Pocsi, I. A1 - Dijksterhuis, J. A1 - Aguirre, J. A1 - Hallsworth, J. A1 - Schumacher, Julia A1 - Ho Wong, K. A1 - Selbmann, L. A1 - Corrochano, L. A1 - Kupiec, M. A1 - Momany, M. A1 - Molin, M. A1 - Requena, N. A1 - Yarden, O. A1 - Cordero, R. A1 - Fischer, R. A1 - Pascon, R. A1 - Mancinelli, R. A1 - Emri, T. A1 - Basso, T. A1 - Rangel, D. T1 - The Third International Symposium on Fungal Stress - ISFUS JF - Fungal Biology N2 - Stress is a normal part of life for fungi, which can survive in environments considered inhospitable or hostile for other organisms. Due to the ability of fungi to respond to, survive in, and transform the environment, even under severe stresses, many researchers are exploring the mechanisms that enable fungi to adapt to stress. The International Symposium on Fungal Stress (ISFUS) brings together leading scientists from around the world who research fungal stress. This article discusses presentations given at the third ISFUS, held in Sao Jose dos Campos, Sao Paulo, Brazil in 2019, thereby summarizing the state-of-the-art knowledge on fungal stress, a field that includes microbiology, agriculture, ecology, biotechnology, medicine, and astrobiology. T2 - International Symposium on Fungal Stress (ISFUS) CY - Sao Jose dos Campos, Brazil DA - 20.05.2019 KW - Agricultural mycology KW - Fungal stress mechanisms and responses KW - Industrial mycology KW - Medical mycology PY - 2020 DO - https://doi.org/10.1016/j.funbio.2020.02.007 VL - 124 IS - 5 SP - 235 EP - 252 PB - Elsevier Ltd. AN - OPUS4-50953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Casali, C. A1 - Feiler, Torvid A1 - Heilmann, Maria A1 - Braga, D. A1 - Emmerling, Franziska A1 - Grepioni, F. T1 - Too much water? Not enough? In situ monitoring of the mechanochemical reaction of copper salts with dicyandiamide JF - CrystEngComm N2 - n situ monitoring of mechanochemical reactions between dicyandiamide (DCD) and CuX2 salts (X = Cl−, NO3−), for the preparation of compounds of agrochemical interest, showed the appearance of a number of phases. It is demonstrated that milling conditions, such as the amount of water added in wet grinding and/or the milling frequency, may affect the course of the mechanochemical reactions, and drive the reaction towards the formation of different products. It has been possible to discover by in situ monitored experiments two novel crystalline forms, namely the neutral complexes [Cu(DCD)2(OH2)2(NO3)2] (2) and [Cu(DCD)2(OH2)Cl2]·H2O (4), in addition to the previously known molecular salt [Cu(DCD)2(OH2)2][NO3]2·2H2O (1, DIVWAG) and neutral complex [Cu(DCD)2(OH2)Cl2] (3, AQCYCU), for which no synthesis conditions were available. Compounds 2 and 4 were fully characterized via a combination of solid-state techniques, including X-ray diffraction, Raman spectroscopy and TGA. KW - Mechanochemistry KW - In situ PY - 2022 DO - https://doi.org/10.1039/d1ce01670a VL - 24 IS - 6 SP - 1292 EP - 1298 PB - RSC AN - OPUS4-54344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Casali, L. A1 - Broll, V. A1 - Ciurili, S. A1 - Braga, D. A1 - Emmerling, Franziska A1 - Gepioni, F. T1 - Facilitating Nitrification Inhibition through Green, Mechanochemical Synthesis of a Novel Nitrapyrin Complex JF - Crystal Growth and Design N2 - Nitrapyrin (NP) is applied to cultivated soils to inhibit the enzymatic activity of ammonia monooxygenase (AMO), but its poor aqueous solubility and high volatility severely limit its application. β-Cyclodextrin (β-CD) is commonly used to form inclusion complexes with hydrophobic molecules, improving water solubility and stability upon complexation. Here we report on the mechanochemical synthesis of the inclusion complex β-CD·NP, characterized via a combination of solid-state techniques, including exsitu and in situ X-ray diffraction, Raman and NMR spectroscopies, transmission electron microscopy, and energy dispersive X-ray spectroscopy. The pure inhibitor NP was also structurally characterized. The β-CD·NP complex presents improved solubility and thermal stability, and still inhibits the enzymatic activity of AMO with high efficacy. All results indicate that the inclusion of NP into β-CD represents a viable route for the preparation of a novel class of inhibitors, with improved properties related to stability, water solubility, and good inhibition activity. KW - Mechanochemistry KW - Nitrification PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537154 DO - https://doi.org/10.1021/acs.cgd.1c00681 VL - 21 IS - 10 SP - 5792 EP - 5799 PB - ACS Publications AN - OPUS4-53715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lederer, J. A1 - Syc, M. A1 - Simon, Franz-Georg A1 - Quina, M. A1 - Hyks, J. A1 - Huber, F. A1 - Funari, V. A1 - Fellner, J. A1 - Braga, R. A1 - Bontempi, E. A1 - Bogush, A. A1 - Blasenbauer, D. T1 - What waste management can learn from the traditional mining sector: Towards an integrated assessment and reporting of anthropogenic resources JF - Waste management N2 - Many organizations in Europe collect data and perform research on municipal solid waste and the secondary raw materials that can be produced from them through recycling, urban mining, or landfill mining.However, the information generated and presented thereby is often highly aggregated, while research activities are many a time isolated. Both reduce the usability of the data and information generated. In order to better structure the knowledge generation on secondary raw materials production from municipal solid waste, we suggest to learn from the traditional raw materials mining Industry how to perform an integrated assessment and reporting of anthropogenic resources. This is exemplarily shown for the case of the anthropogenic resource municipal solid waste incineration bottom ash and airpollution control residues. A network of expert institutions from countries throughout Europe was build up to compile the information on legal and technological aspects for the recovery of different secondary raw materials from these residues, including construction minerals, metals, and salts. We highlight in our article the strength of the combined knowledge of an expert network not only on legal and technological, but also local and site-specific aspects of the recovery of secondary raw materials. By doing so, we hope to kick-off a discussion for how to organize and implement a structure for a better management of knowledge on anthropogenic resources, in order to provide a sustainable supply of secondary raw materials for a greener and more circular economy. KW - Waste management KW - Resources KW - Mining PY - 2020 DO - https://doi.org/10.1016/j.wasman.2020.05.054 VL - 113 SP - 154 EP - 156 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-50876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -