TY - JOUR A1 - Gluth, Gregor A1 - Arbi, K. A1 - Bernal, S. A. A1 - Bondar, D. A1 - Castel, A. A1 - Chithiraputhiran, S. A1 - Dehghan, A. A1 - Dombrowski-Daube, K. A1 - Dubey, A. A1 - Ducman, V. A1 - Peterson, K. A1 - Pipilikaki, P. A1 - Valcke, S. L. A. A1 - Ye, G. A1 - Zuo, Y. A1 - Provis, J. L. T1 - RILEM TC 247-DTA round robin test: carbonation and chloride penetration testing of alkali-activated concretes N2 - Many standardised durability testing methods have been developed for Portland cement-based concretes, but require validation to determine whether they are also applicable to alkali-activated materials. To address this question, RILEM TC 247-DTA ‘Durability Testing of Alkali-Activated Materials’ carried out round robin testing of carbonation and chloride penetration test methods, applied to five different alkali-activated concretes based on fly ash, blast furnace slag or metakaolin. The methods appeared overall to demonstrate an intrinsic precision comparable to their precision when applied to conventional concretes. The ranking of test outcomes for pairs of concretes of similar binder chemistry was satisfactory, but rankings were not always reliable when comparing alkali-activated concretes based on different precursors. Accelerated carbonation testing gave similar results for fly ash-based and blast furnace slag-based alkali-activated concretes, whereas natural carbonation testing did not. Carbonation of concrete specimens was observed to have occurred already during curing, which has implications for extrapolation of carbonation testing results to longer service life periods. Accelerated chloride penetration testing according to NT BUILD 443 ranked the tested concretes consistently, while this was not the case for the rapid chloride migration test. Both of these chloride penetration testing methods exhibited comparatively low precision when applied to blast furnace slag-based concretes which are more resistant to chloride ingress than the other materials tested. KW - Alkali-activated materials KW - Durability KW - Carbonation KW - Chloride penetration KW - Concrete PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-504045 SN - 1359-5997 SN - 1871-6873 VL - 53 IS - 1 SP - 21 PB - Springer Nature AN - OPUS4-50404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Provis, J. L. A1 - Arbi, K. A1 - Bernal, S. A. A1 - Bondar, D. A1 - Buchwald, A. A1 - Castel, A. A1 - Chithiraputhiran, S. A1 - Cyr, M. A1 - Dehghan, A. A1 - Dombrowski-Daube, K. A1 - Dubey, A. A1 - Ducman, V. A1 - Gluth, Gregor A1 - Nanukuttan, S. A1 - Peterson, K. A1 - Puertas, F. A1 - van Riessen, A. A1 - Torres-Carrasco, M. A1 - Ye, G. A1 - Zuo, Y. T1 - RILEM TC 247-DTA round robin test: mix design and reproducibility of compressive strength of alkali-activated concretes N2 - The aim of RILEM TC 247-DTA ‘Durability Testing of Alkali-Activated Materials’ is to identify and validate methodologies for testing the durability of alkali-activated concretes. To underpin the durability testing work of this committee, five alkali-activated concrete mixes were developed based on blast furnace slag, fly ash, and flash-calcined metakaolin. The concretes were designed with different intended performance levels, aiming to assess the capability of test methods to discriminate between concretes on this basis. A total of fifteen laboratories worldwide participated in this round robin test programme, where all concretes were produced with the same mix designs, from single-source aluminosilicate precursors and locally available aggregates. This paper reports the mix designs tested, and the compressive strength results obtained, including critical insight into reasons for the observed variability in strength within and between laboratories. KW - Alkali-activated materials KW - Alkali-activated slag KW - Compressive strength KW - Concrete KW - Mix-design PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-489131 SN - 1359-5997 SN - 1871-6873 VL - 52 IS - 5 SP - Article Number 99 PB - Springer Nature AN - OPUS4-48913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -