TY - JOUR A1 - Böttcher, Katrin A1 - Schmitt Rahner, M. A1 - Stolzenberg, U. A1 - Kraft, Sebastian A1 - Bonse, Jörn A1 - Feist, C. A1 - Albrecht, D. A1 - Pullner, B. A1 - Krüger, Jörg T1 - Worst-case X-ray photon energies in ultrashort pulse laser processing N2 - Ultrashort pulse laser processing can result in the secondary generation of unwanted X-rays if a critical laser irradiance of about 10^13 W/cm^2 is exceeded. Spectral X-ray emissions were investigated during the processing of tungsten and steel using three complementary spectrometers (based on CdTe and silicon drift detectors) simultaneously for the identification of a worst-case spectral scenario. Therefore, maximum X-ray photon energies were determined, and corresponding dose equivalent rates were calculated. An ultrashort pulse laser workstation with a pulse duration of 274 fs, a center wavelength of 1030 nm, pulse repetition rates between 50 kHz and 200 kHz, and a Gaussian laser beam focused to a spot diameter of 33 µm was employed in a single pulse and burst laser operation mode. Different combinations of laser pulse energy and repetition rate were utilized, keeping the average laser power constant close to the maximum power of 20 W. Peak irradiances ranging from 7.3 × 10^13 W/cm^2 up to 3.0 × 10^14 W/cm^2 were used. The X-ray dose equivalent rate increases for lower repetition rates and higher pulse energy if a constant average power is used. Laser processing with burst mode significantly increases the dose rates and the X-ray photon energies. A maximum X-ray photon energy of about 40 keV was observed for burst mode processing of tungsten with a repetition rate of 50 kHz and a peak irradiance of 3 × 10^14 W/cm^2. KW - Ultrashort pulsed laser KW - X-ray emission KW - X-ray spectrum KW - X-ray energies KW - Radiation protection PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-566176 DO - https://doi.org/10.3390/ma15248996 VL - 15 IS - 24 SP - 1 EP - 17 PB - MDPI AN - OPUS4-56617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Albrecht, S. A1 - Schäfer, S. A1 - Lange, I. A1 - Yilmaz, S. A1 - Dumsch, I. A1 - Allard, S. A1 - Scherf, U. A1 - Hertwig, Andreas A1 - Neher, D. T1 - Light management in PCPDTBT:PC70BM solar cells: A comparison of standard and inverted device structures N2 - We compare standard and inverted bulk heterojunction solar cells composed of PCPDTBT:PC70BM blends. Inverted devices comprising 100 nm thick active layers exhibited short circuit currents of 15 mA/cm², 10% larger than in corresponding standard devices. Modeling of the optical field distribution in the different device stacks proved that this enhancement originates from an increased absorption of incident light in the active layer. Internal quantum efficiencies (IQEs) were obtained from the direct comparison of experimentally derived and modeled currents for different layer thicknesses, yielding IQEs of ~70% for a layer thickness of 100 nm. Simulations predict a significant increase of the light harvesting efficiency upon increasing the layer thickness to 270 nm. However, a continuous deterioration of the photovoltaic properties with layer thickness was measured for both device architectures, attributed to incomplete charge extraction. On the other hand, our optical modeling suggests that inverted devices based on PCPDTBT should be able to deliver high power conversion efficiencies (PCEs) of more than 7% provided that recombination losses can be reduced. KW - Organic solar cells KW - Inverted solar cells KW - PCPDTBT KW - Low band-gap KW - Optical modeling PY - 2012 DO - https://doi.org/10.1016/j.orgel.2011.12.019 SN - 1566-1199 VL - 13 IS - 4 SP - 615 EP - 622 CY - Amsterdam [u.a.] AN - OPUS4-25453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -