TY - JOUR A1 - Leng, Jing A1 - Szymoniak, Paulina A1 - Kang, N.-J. A1 - Wang, D-Y A1 - Wurm, A. A1 - Schick, C. A1 - Schönhals, Andreas T1 - Influence of interfaces on the crystallization behavior and the rigid amorphous phase of poly(l-lactide)-based nanocomposites with different layered doubled hydroxides as nanofiller JF - Polymer N2 - Based on the three-phase model of semi-crystalline polymers, we determined all phase fractions of the NiAl-LDH/PLLA nanocomposites in dependence on the concentration of the nanofiller. Moreover, the rigid amorphous fraction (RAF) was separated into the RAFcrystal and the RAFfiller unbiasedly. A detailed comparison to the related nanocomposite system MgAl-LDH/PLLA was made considering that Mg and Ni have different atomic weights. As a first result is was found that NiAl-LDH/PLLA displays a higher crystallization rate compared to MgAl-LDH/PLLA, which is related to the different morphologies of the two nanocomposite systems. For both systems RAFcrystal increases with increasing concentration of the nanofiller. This means in the case of the nanocomposite not each crystal produces the same amount of RAF, as often assumed. Also, RAFfiller increases with the concentration for both systems but in a different way. This is discussed considering again the different morphologies of both nanocomposites. KW - Polymer-based nanocomposites KW - Temperature modulated differential scanning calorimetry PY - 2019 DO - https://doi.org/10.1016/j.polymer.2019.121929 VL - 184 SP - 121929 PB - Elesevier Ltd. AN - OPUS4-49557 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Omar, Hassan A1 - Smales, Glen Jacob A1 - Henning, S. A1 - Li, Z. A1 - Wang, D.-Y. A1 - Schönhals, Andreas A1 - Szymoniak, Paulina T1 - Calorimetric and Dielectric Investigations of Epoxy-Based Nanocomposites with Halloysite Nanotubes as Nanofillers JF - Polymers N2 - Epoxy nanocomposites are promising materials for industrial applications (i.e., aerospace, marine and automotive industry) due to their extraordinary mechanical and thermal properties. Here, the effect of hollow halloysite nanotubes (HNT) on an epoxy matrix (Ep) was the focus of the study. The structure and molecular mobility of the nanocomposites were investigated using a combination of X-ray scattering, calorimetry (differential (DSC) and fast scanning calorimetry (FSC)) and dielectric spectroscopy. Additionally, the effect of surface modification of HNT (polydopamine (PDA) and Fe(OH)3 nanodots) was considered. For Ep/HNT, the glass transition temperature (Tg) is was de-creased due to a nanoparticle-related decrease of the crosslinking density. For the modified system, Ep/m-HNT, the surface modification resulted in enhanced filler–matrix interactions leading to higher Tg values than the pure epoxy in some cases. For Ep/m-HNT, the amount of interface formed between the nanoparticles and the matrix ranged from 5% to 15%. Through BDS measurements, localized fluctuations were detected as a β- and γ-relaxation, related to rotational fluctuations of phenyl rings and local reorientations of unreacted components. A combination of calorimetry and BDS dielectric spectroscopy revealed a dynamic and structural heterogeneity of the matrix, as confirmed by two glassy dynamics in both systems, related to regions with different crosslinking densities. KW - Rigid amorphous fraction KW - Epoxy nanocomposites KW - Halloysite nanotubes KW - X-ray scattering KW - Differential scanning calorimetry KW - Broadband dielectric spectroscopy KW - Flash DSC PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-526668 DO - https://doi.org/10.3390/polym13101634 VL - 13 IS - 10 SP - 1634 PB - MDPI AN - OPUS4-52666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Purohit, Purv A1 - Wang, D.-Y. A1 - Wurm, Andreas A1 - Schick, C. A1 - Schönhals, Andreas T1 - Comparison of thermal and dielectric spectroscopy for nanocomposites based on polypropylene and layered double hydroxide - proof of interfaces JF - European polymer journal N2 - Polymer based nanocomposites by melt blending of synthesized ZnAl-Layered Double Hydroxide (ZnAl-LDH) and polypropylene (PP) were investigated by temperature modulated differential scanning calorimetry (TMDSC). The LDH was organically modified by using a surfactant, sodium dodecylbenzene sulfonate (SDBS) to increase the interlayer spacing of the LDH, so that polymer segments can intercalate the inter layer galleries. The glass transition temperature (Tg) and the thermal relaxation strength (Δcp) were determined. The Tg remains constant for concentration till 12 wt% of LDH and a slight reduction of 3 K might be observed for 16 wt% LDH but within the experimental error. The thermal relaxation strength decreases indicating reduction in the amount of mobile polymer segments from amorphous fraction. This finding is supported by the increase in the rigid amorphous fraction (RAF) which is attributed to the polymer molecules which are in close proximity to the crystals and the LDH sheets, as they hinder their mobility. This is analyzed in detail and related to the dielectric relaxation spectroscopy (BDS) results. KW - Polypropylene KW - Layered double hydroxide KW - Nanocomposites KW - Temperature modulated differential scanning calorimetery KW - Dielectric spectroscopy KW - Rigid amorphous fraction PY - 2014 DO - https://doi.org/10.1016/j.eurpolymj.2014.03.005 SN - 0014-3057 SN - 1873-1945 VL - 55 SP - 48 EP - 56 PB - Elsevier CY - Oxford AN - OPUS4-30626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leng, Jing A1 - Kang, N. A1 - Wang, D.-Y. A1 - Wurm, Andreas A1 - Schick, C. A1 - Schönhals, Andreas T1 - Crystallization behavior of nanocomposites based on poly(L-lactide) and MgAl layered double hydroxides - Unbiased determination of the rigid amorphous phases due to the crystals and the nanofiller JF - Polymer N2 - Semicrystalline polymers have to be described by a three phase model consisting of a mobile amorphous (MAF), a crystalline (CF), and a rigid amorphous fraction (RAF). For nanocomposites based on a semicrystalline polymer the RAF is due to both the crystallites (RAFcrystal) and the filler (RAFfiller). Polymer nanocomposite based on poly(L-lactide) and MgAl layered double hydroxide nanofiller were prepared. Due to the low crystallization rate of PLA ist crystallization can be suppressed by a high enough cooling rate, and the RAF is due only to the nanofiller. The MAF, CF, and RAF were estimated by Temperature Modulated DSC. For the first time CF, MAF, RAFcrystal, and RAFfiller could be estimated. It was found, that RAFfiller increases linearly with the concentration of the nanofiller for this system. Furthermore, RAFcrystal is only slightly influenced by the presence of the nanofiller. KW - Polymer based nanocomposites PY - 2017 DO - https://doi.org/10.1016/j.polymer.2016.11.065 SN - 0032-3861 SN - 1873-2291 VL - 108 SP - 257 EP - 264 PB - Elesevier AN - OPUS4-39052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Li, Z. A1 - Wang, D.-Y. A1 - Schoenhals, Andreas T1 - Dielectric and flash DSC investigations on an epoxy based nanocomposite system with MgAl layered double hydroxide as nanofiller JF - Thermochimica Acta N2 - Nanocomposites based on MgAL layered double hydroxides (LDH) and an epoxy resin were prepared and investigated by a combination of complementary methods. As epoxy resin Bisphenol A diglycidyl ether (DGEBA) was used with Diethylenetriamine as curing agent. The LDH was modified with taurine, which acts as an additional crosslinking agent due to its amine groups. The epoxy resin was cured in a presence of the nanofiller, which was added to the system in various concentrations. X-ray scattering, by combination of SAXS and WAXS was used to characterize the morphology of the obtained nanocomposites. These investigations show that the filler is distributed in the matrix as small stacks of ca. 10 layers. The molecular dynamics of the system, as probe for structure, was investigated by broadband dielectric spectroscopy. In addition to the - and -relaxation (dynamic glass transition), characteristic for the unfilled materials, a further process was found which was assigned to localized fluctuations of segments physically adsorbed or chemically bonded to the nanoparticles. The dielectric -relaxation is shifted to higher temperatures for the nanocomposites in comparison to the pure material but depends weakly on the content of nanoparticles. Further, for the first time Flash DSC was employed to a thermosetting system to investigate the glass transition behavior of the nanocomposites. The heating rates were converted in to relaxation rates. For low concentrations of the nanofiller the thermal data overlap more or less with that of the pure epoxy. For higher concentrations the thermal data are shifted significantly to higher temperatures. This is discussed in terms the cooperativity approach to the glass transition. KW - Nanocomposites KW - Broadband dielectric spectroscopy KW - Flash DSC PY - 2019 DO - https://doi.org/10.1016/j.tca.2019.01.010 SN - 0040-6031 VL - 677 SP - 151 EP - 161 PB - Elsevier AN - OPUS4-48218 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Szymoniak, Paulina A1 - Qu, Xintong A1 - Abbasi, M. A1 - Pauw, Brian Richard A1 - Henning, S. A1 - Li, Z. A1 - Wang, D.-Y. A1 - Schick, C. A1 - Saalwächter, K. A1 - Schönhals, Andreas T1 - Spatial inhomogeneity, Interfaces and Complex Vitrification Kinetics in a Network Forming Nanocomposite JF - Soft Matter N2 - A detailed calorimetric study on an epoxy-based nanocomposite system was performed employing bisphenol A diglycidyl ether (DGEBA) cured with diethylenetriamine (DETA) as the polymer matrix and taurine-modified MgAL layered double hydroxide (T-LDH) as nanofiller. The -NH2 group of taurine can react with DGEBA improving the interaction of the polymer with the filler. The combined X-ray scattering, and electron microscopy data showed that the nanocomposite has a partially exfoliated morphology. Calorimetric studies were performed with conventional DSC, temperature modulated DSC (TMDSC) and fast scanning calorimetry (FSC) in the temperature modulated approach (TMFSC) to investigate the vitrification and molecular mobility in dependence of the filler concentration. First, TMDSC and NMR were used to estimate the amount of the rigid amorphous fraction which consists of immobilized polymer segments at the nanoparticle surface. It was found to be 40 wt% for the highest filler concentration, indicating that the interface dominates the overall macroscopic properties and behavior of the material to a great extent. Second, the relaxation rates of the α-relaxation obtained by TMDSC and TMFSC were compared with the thermal and dielectric relaxation rates measured by static FSC. The investigation revealed that the system shows two distinct α-relaxation processes. Furthermore, also two separate vitrification mechanisms were found for a bulk network-former without geometrical confinement as also confirmed by NMR. This was discussed in terms of the intrinsic spatial heterogeneity on a molecular scale, which becomes more pronounced with increasing nanofiller content. KW - Polymer based Nanocomposites PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523199 DO - https://doi.org/10.1039/d0sm01992e SN - 1744-6848 VL - 17 IS - 10 SP - 2775 EP - 2790 PB - Royal Society of Chemistry AN - OPUS4-52319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Purohit, Purv A1 - Huacuja Sánchez, Jesús A1 - Wang, D.-Y. A1 - Emmerling, Franziska A1 - Thünemann, Andreas A1 - Heinrich, G. A1 - Schönhals, Andreas T1 - Structure - property relationships of nanocomposites based on polypropylene and layered double hydroxides JF - Macromolecules N2 - Nanocomposites based on polypropylene (PP) and organically modified ZnAl layered double hydroxides (ZnAl-LDH) were prepared by melt blending and investigated by a combination of differential scanning calorimetry (DSC), small- and wide-angle X-ray scattering (SAXS and WAXS), and dielectric relaxation spectroscopy (DRS). An average number of stack size of LDH layers is calculated by analyzing the SAXS data which is close to that of pure organically modified ZnAl-LDH. Scanning microfocus SAXS investigations show that the ZnAl-LDH is homogeneously distributed in the PP matrix as stacks of 4–5 layers with an intercalated morphology. DSC and WAXS results show that the degree of crystallinity decreases linearly with the increasing content of LDH. The extrapolation of this dependence to zero estimates a limiting concentration of ca. 40% LDH where the crystallization of PP is completely suppressed by the nanofiller. The dielectric spectra of the nanocomposites show several relaxation processes which are discussed in detail. The intensity of the dynamic glass transition (β-relaxation) increases with the concentration of LDH. This is attributed to the increasing concentration of the exchanged anion dodecylbenzenesulfonate (SDBS) which is adsorbed at the LDH layers. Therefore, a detailed analysis of the β-relaxation provides information about the structure and the molecular dynamics in the interfacial region between the LDH layers and the polypropylene matrix which is otherwise dielectrically invisible (low dipole moment). As a main result, it is found that the glass transition temperature in this interfacial region is by 30 K lower than that of pure polypropylene. This is accompanied by a drastic change of the fragility parameter deduced from the relaxation map. KW - Nanocomposites KW - Layered double hydroxide KW - Dielectric spectroscopy KW - X-ray scattering KW - Polypropylene PY - 2011 DO - https://doi.org/10.1021/ma200323k SN - 0024-9297 SN - 1520-5835 VL - 44 IS - 11 SP - 4342 EP - 4354 PB - American Chemical Society CY - Washington, DC AN - OPUS4-23921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Purohit, Purv A1 - Wang, D.-Y. A1 - Emmerling, Franziska A1 - Thünemann, Andreas A1 - Heinrich, G. A1 - Schönhals, Andreas T1 - Arrangement of layered double hydroxide in a polyethylene matrix studied by a combination of complementary methods JF - Polymer N2 - Organically modified ZnAl Layered Double Hydroxides (ZnAl-LDH) was synthesized and melt blended with polyethylene to obtain nanocomposites. The resulting morphology was investigated by a combination of Differential Scanning Calorimetry (DSC), Small and Wide-angle X-ray scattering (SAXS and WAXS) and dielectric relaxation spectroscopy (DRS). The arrangement (intercalation) of polyethylene chains between LDH stacks was investigated employing SAXS. The homogeneity of the nanocomposites and average number of stack size (4–6 layers) were determined using scanning microfocus SAXS (BESSY II). DSC and WAXS results show that the degree of crystallinity decreases linearly with the increasing content of LDH. The extrapolation of this dependence to zero estimates a limiting concentration of ca. 45% LDH where the crystallization of PE is completely suppressed by the nanofiller. The dielectric spectra of the nanocomposites show several relaxation processes which are discussed in detail. The intensity of the dynamic glass transition (β-relaxation) increases with the concentration of LDH. This is attributed to the increasing concentration of the exchanged anion sodium dodecylbenzene sulfonate (SDBS) which is adsorbed at the LDH layers. Therefore, a detailed analysis of the β-relaxation provides information about the structure and the molecular dynamics in the interfacial region between the LDH layers and the polyethylene matrix which is otherwise dielectrically invisible (low dipole moment). KW - Dielectric spectroscopy KW - Polyethylene nanocomposites KW - Layered double hydroxides PY - 2012 DO - https://doi.org/10.1016/j.polymer.2012.03.041 SN - 0032-3861 SN - 1873-2291 VL - 53 IS - 11 SP - 2245 EP - 2254 PB - Springer CY - Berlin AN - OPUS4-25810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Leng, Jing A1 - Purohit, Purv A1 - Kang, N. A1 - Wang, D.-Y. A1 - Falkenhagen, Jana A1 - Emmerling, Franziska A1 - Thünemann, Andreas A1 - Schönhals, Andreas T1 - Structure-property relationships of nanocomposites based on polylactide and MgAl layered double hydroxides JF - European polymer journal N2 - Nanocomposites based on poly(ʟ-lactide) (PLA) and organically modified MgAl Layered Double Hydroxides (MgAl-LDH) were prepared by melt blending and investigated by a combination of Differential Scanning Calorimetry (DSC), Small- and Wide-Angle X-ray Scattering (SAXS, WAXS), and dielectric spectroscopy (BDS). Scanning microfocus SAXS investigations show that the MgAl-LDH is homogeneously distributed in the matrix as stacks of 6 layers and/or partly exfoliated layers. DSC and WAXS show that the degree of crystallinity decreases linearly with the content of LDH. The extrapolation of the dependencies (DSC and WAXS) to zero estimates a limiting concentration of LDH CCri of ca. 21 wt% where the crystallization of PLA is completely suppressed by the nanofiller. The dielectric behavior of neat PLA show two relaxation regions, a β-relaxation at low temperatures related to localized fluctuations and the α-relaxation at higher temperatures due to the dynamic glass transition. The dielectric spectra of the nanocomposites show several additional relaxation processes compared to neat PLA which are discussed in detail. For the nanocomposites around 260 K (ƒ = 1 kHz) an additional process is observed which intensity increases with increasing concentration of LDH. This process is mainly attributed to the exchanged dodecylbenzene sulfonate (SDBS) molecules which are adsorbed at the LDH layers and form a mixed phase with the polymer close to the layers and stacks. An analysis of this process provides information about the molecular dynamics in the interfacial region between the LDH layers and the PLA matrix which reveal glassy dynamics in this region. In the temperature range around 310 K (ƒ = 1 kHz) a further process is observed. Its relaxation rate has an unusual saddle-like temperature dependence. It was assigned to rotational fluctuations of water molecules in a nanoporous environment provided by the LDH filler. Above the glass transition temperature a further process is observed at temperatures above. It is related to Maxwell/Wagner/Sillars polarization due to the blocking of charges at the nanofiller. KW - Polymer based nanocomposites KW - Polylactide KW - Layered double hydroxides KW - Dielectric spectroscopy PY - 2015 DO - https://doi.org/10.1016/j.eurpolymj.2015.05.008 SN - 0014-3057 SN - 1873-1945 VL - 68 SP - 338 EP - 354 PB - Elsevier CY - Oxford AN - OPUS4-33257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -