TY - JOUR A1 - Thater, Raphael A1 - Perret, William A1 - Schwenk, Christopher A1 - Alber, U. A1 - Rethmeier, Michael T1 - Industrial application of welding temperature field and distortion visualization using FEA KW - Numerical welding simulation KW - Temperature field KW - Distortion KW - Industrial application KW - Automotive assembly PY - 2010 SN - 0387-4508 VL - 39 IS - 2 SP - 232 EP - 234 CY - Osaka, Japan AN - OPUS4-24354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinze, Christoph A1 - Schwenk, Christopher A1 - Rethmeier, Michael T1 - Effect of heat source configuration on the result quality of numerical calculation of welding-induced distortion N2 - The results of numerical welding simulations strongly depend on its temperature field. In the present paper, the temperature field of a pulsed gas metal arc weld of structural steel S355J2+N (ASTM A572 Gr. 50) with a thickness of 5 mm is experimentally and numerically investigated. In the case of temperature field validation, volumetric Gauss and double-ellipsoid Goldak heat sources are applied. Additionally, different heat source configurations, including adaptations of thermal conductivity, are analyzed regarding their influence on the calculation of welding-induced distortion. The investigations clarify the influence of heat source configurations on the calculated results, thus, contribute to an improved prediction of welding-induced distortion. KW - Welding simulation KW - Heat source calibration KW - Gas metal arc welding KW - Sensitivity analysis KW - Distortion KW - Schweißsimulation KW - Verzug KW - Wärmequellenkonfiguration KW - Sysweld KW - Heat source configuration PY - 2011 U6 - https://doi.org/10.1016/j.simpat.2011.09.004 SN - 1569-190X VL - 20 IS - 1 SP - 112 EP - 123 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-24684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perret, William A1 - Thater, R. A1 - Alber, U. A1 - Schwenk, Christopher A1 - Rethmeier, Michael T1 - Approach to assess a fast welding simulation in an industrial envrionment - application for an automotive welded part N2 - Fusion welding processes are widely used for joining metal structures, such as pipes, ships, and cars. In general, these joining processes offer a very good compromise between reliability, safety, cost and maintenance which are important issues in the current economical context. The negative heat effects of welding, i.e. distortions and residual stresses of the welded parts, are well known and many researches in this field have already been done in the last decades in order to minimize them. On the experimental side, many sophisticated procedures have become state of the art to deal with this problem. On the computational side, the improvement of the simulation algorithms and the computing power enables the simulations of many physical phenomena occurring during the welding process. The implementation of welding simulation techniques is nevertheless not an easy task and often associated with expert knowledge which hinders their global application in an industrial environment. This paper is focused on the industrial requirements of a welding simulation software with special respect to the needs of the automotive industry. The necessary information to run a welding simulation and the expectations of a weld specialist without deep knowledge in numerical methods are investigated. These expectations are tested on an automotive welded assembly with a commercially available welding simulation software designed especially for the needs of the automotive industry. A welding experiment is done and the measured temperature distributions and distortions serve as reference to validate the simulation results. The result quality of the simulations of temperature fields and distortions is in best agreement with experimental data. The workflow is well adapted for the considered industrial requirements and the time-tosolution as well as the computational costs are acceptable, whereas the efficient calibration of the heat input model is still a point which will be further investigated in current and future research works. KW - Welding simulation KW - Distortion KW - Automotive industry KW - Work-flow KW - Time-to-solution KW - Simufact.welding PY - 2011 U6 - https://doi.org/10.1007/s12239-011-0102-0 SN - 1229-9138 VL - 12 IS - 6 SP - 895 EP - 901 PB - KSAE / Springer CY - Seoul / Berlin ; Heidelberg AN - OPUS4-25139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perret, William A1 - Thater, Raphael A1 - Alber, U. A1 - Schwenk, Christopher A1 - Rethmeier, Michael T1 - Case study for welding simulation in the automotive industry N2 - Welding is one of the most widely used joining processes in structural applications, like in car body production in the automotive industry. It is well-known that distortions and residual stresses occur during and after the welding process. Many procedures exist to decrease these negative heat effects of welding, but are often coupled with highly cost intensive experiments. For several decades, simulation models have been developed to understand and predict the heat effects of welding and to reduce experimental effort. In the production planning of various Original Equipment Manufacturers (OEM), some simulation tools are already well established, e.g. for crash test, forming or casting simulations. For welding, the demand is high but the implementation of welding simulation software is still not established yet. Welding is a complex process and the development of a flexible simulation tool, which produces good simulation results without expert knowledge in simulation, is not an easy task. In this paper, a welded assembly from the automotive industry has been simulated and compared to experimental data. Temperature fields and transient distortion distributions have been measured with thermocouples and with an optical 3D deformations analysis tool, respectively. The simulation has been run with a commercially available welding simulation software. The simulated temperature fields match the numerical ones perfectly. The simulated distortions are also qualitatively in best agreement with the experimental ones. Quantitatively, a difference of approximately 20 % between the simulated and the measured distortions is visible; this is acceptable considering the simplifications and assumptions of the simulation model. The global time to solution to get these results without expert knowledge in welding simulation was between 4 and 6 weeks, which is a reasonable time frame for an industrial application of welding simulation. KW - Automobiles KW - Distortion KW - Simulating KW - Temperature KW - Welding KW - Aluminium alloys KW - Al Mg Si alloys KW - Automobile engineering KW - Finite elements analysis KW - Mathematical models KW - MIG welding KW - Residual stresses KW - Vehicle bodies PY - 2011 U6 - https://doi.org/10.1007/BF03321546 SN - 0043-2288 SN - 1878-6669 VL - 55 IS - 11/12 SP - 89 EP - 98 PB - Springer CY - Oxford AN - OPUS4-25029 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schwenk, Christopher A1 - Rethmeier, Michael ED - H.-W. Zoch, ED - T. Lübben, T1 - Distortion optimisation of beam-welded industrial parts by means of numerical welding simulation T2 - 2nd International Conference on Distortion Engineering (IDE 2008) CY - Bremen, Germany DA - 2008-09-17 KW - Distortion KW - Optimisation KW - Industrial Parts KW - Numerical Welding Simulation KW - Beam Welding PY - 2008 SP - 483 EP - 490 AN - OPUS4-18278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwenk, Christopher A1 - Rethmeier, Michael T1 - Distortion optimisation of beam-welded industrial parts by means of numerical welding simulation KW - Distortion KW - Optimisation KW - Weld plan modification KW - Industrial parts KW - Automotive application KW - Numerical welding simulation KW - Laser beam welding KW - Electron beam welding KW - Finite element analysis KW - FEA PY - 2010 SN - 1741-8410 SN - 1741-8429 VL - 5 IS - 4/5 SP - 412 EP - 422 PB - Inderscience Enterprises Ltd CY - Genève, Switzerland AN - OPUS4-22705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thater, Raphael A1 - Perret, William A1 - Schwenk, Christopher A1 - Alber, U. A1 - Rethmeier, Michael T1 - Industrial application of welding temperature field and distortion visualization using FEA N2 - The non-uniform heat input during the welding process leads to problematic permanent deformations of welded parts. The control of these welding distortions is, with the absence of the knowledge of the fundamental mechanisms responsible for these deformations, an extremely time and cost consuming iterative “trial-and-error” optimization process. The visualization of the involved physical phenomena, like temperature and distortions, .is an indispensable tool to clearly identify these mechanisms in order to adapt the welding parameters and clamping conditions target-oriented. Both experimental and virtual methods exist to obtain these physical data, however the possibilities to visualize them with experimental methods are laborious, expensive and limited in their application. Welding Simulation using finite element analysis (FEA) offers many benefits and has a great potential to reduce the experimental effort. Nevertheless, the industrial application of welding Simulation is not yet established widely because of reservations regarding the computation costs and the resulting accuracy for instance. In this paper, the results of a case study for a welding Simulation with an industrial background are presented. A welded assembly from the automotive industry has been investigated with numerical and experimental methods. A comparison between both methods demonstrates the Potentials of welding Simulation in terms of visualization. Furthermore, the numerical results reveal the possibilities of current resources. regarding calculation time and result accuracy of an industrial applied welding Simulation. T2 - VISUAL-JW 2010 - The international symposium on visualization in joining & welding science through advanced measurements and simulation CY - Osaka, Japan DA - 11.11.2010 KW - Numerical welding simulation KW - Temperature field KW - Distortion KW - Industrial application KW - Automotive assembly PY - 2010 VL - 1 IS - PT-31 SP - 245 EP - 246 AN - OPUS4-22721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schwenk, Christopher A1 - Rethmeier, Michael T1 - Simulation based approach for distortion analysis and optimisation of beam welded automotive parts T2 - VI. International conference "Beam technologies & laser application" CY - Saint Petersburg, Russia DA - 2009-09-23 KW - Numerical welding simulation KW - Distortion KW - Optimisation KW - Laser and electron beam welding KW - Automotive parts PY - 2009 SP - 1 EP - 9(?) CY - Saint Petersburg, Russia AN - OPUS4-20797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Perret, William A1 - Thater, R. A1 - Alber, U. A1 - Schwenk, Christopher A1 - Rethmeier, Michael T1 - Case study for welding simulation in the automotive industry T2 - INPRO - Intermediate meeting - IIW-Select committee "automotive and road transport" DA - 2010-04-21 KW - Welding simulation KW - Temperature field KW - Distortion KW - Automotive industry KW - Experimental validation PY - 2010 IS - IIW-Doc. No. SC-Auto-37-10 SP - 1 EP - 13 AN - OPUS4-22541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -