TY - CONF A1 - Bernardy, Christopher A1 - Habib, Abdel Karim A1 - Kluge, Martin A1 - Schalau, Bernd A1 - Kant, Hanjo A1 - Schulze, Marcel A1 - Orchini, Alessandro T1 - Sicherheitstechnische Untersuchungen von Wasserstoff Freistrahlflammen bei Hochdruck im Realmaßstab N2 - Wasserstoff als Energieträger gewinnt zunehmend an Bedeutung. Die Untersuchung von Störfallauswirkungen mit Wasserstoff rückt somit stärker in den Fokus. Da Wasserstoff meist unter Druck gelagert und transportiert wird, ist ein zu betrachtendes Szenario die Freisetzung aus einer Leckage mit anschließender Zündung. Die daraus resultierende Freistrahlflamme (Jet Flame) muss hinsichtlich der in die Umgebung emittierten Wärmestrahlung charakterisiert werden. In der Literatur existieren bereits verschiedene Modelle, welche jedoch vermehrt auf Daten aus Kohlenwasserstoffflammen mit geringem Impuls basieren. Zur Überprüfung dieser Modelle wird im Zuge des BAM internen H2 Jet Flame Projektes die sicherheitstechnische Untersuchung von impulsbehafteten Wasserstoff Freistrahlflammen vorgenommen. Hierfür finden Versuche im Realmaßstab auf dem Testgelände Technische Sicherheit der BAM (BAM-TTS) statt. Gegenstand der Untersuchungen ist die Beurteilung der Auswirkungen von realistischen Freisetzungsszenarien hinsichtlich der Flammengeometrie und der freigesetzten Wärmestrahlung. Dabei werden Parameter wie Freisetzungswinkel, Leckagedurchmesser (z.Zt. 1 mm bis 30 mm), Druck (z.Zt. bis max. 250 bar) und Massenstrom (bis max. 0,5 kg/s) variiert. Zusätzlich können auch Einflüsse wie Art der Zündung, Zündort sowie Zündung mit zeitlichem Verzug untersucht werden. Gewonnene Erkenntnisse werden mit den Ergebnissen bereits vorhandener Modelle verglichen und diese im Bedarfsfall weiterentwickelt. Insbesondere wird der Fokus auf die Modellierung der freigesetzten Wärmestrahlung von Wasserstoffflammen gelegt. Herausforderung dabei stellt die IR-Vermessung und Modellierung von Sichtmodellen der Flammen dar. Die Visualisierung der Flammengeometrie wird mit Hilfe mehrerer Infrarot Kamerasystemen (aus mindestens zwei Blickwinkeln) vorgenommen. Bisherige Messungen, die in der Literatur zu finden sind, basieren meist auf instationären Auströmbedingungen. Der hier verwendete Versuchsaufbau ermöglicht ein stationäres Ausströmen für mehrere Minuten und somit eine direkte Vergleichbarkeit mit den existierenden (stationären) Modellen. Weiterhin ist der Versuchsstand umrüstbar für Vergleichsmessungen mit Kohlenwasserstoffen (Methan etc.) sowie Mischungen aus Wasserstoff und Kohlenwasserstoffen. T2 - Magdeburg-Köthener Brandschutz- und Sicherheitstagung 2024 CY - Magdeburg, Germany DA - 14.03.2024 KW - Wassersoff KW - Freistrahlflamme KW - Wärmestrahlung PY - 2024 AN - OPUS4-59911 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernardy, Christopher A1 - Habib, Abdel Karim A1 - Kluge, Martin A1 - Schalau, Bernd A1 - Kant, Hanjo A1 - Schulze, Marcel A1 - Orchini, Alessandro T1 - Sicherheitstechnische Untersuchungen von Wasserstoff Freistrahlflammen bei Hochdruck im Realmaßstab N2 - Wasserstoff als Energieträger gewinnt zunehmend an Bedeutung. Die Untersuchung von Störfallauswirkungen mit Wasserstoff rückt somit stärker in den Fokus. Da Wasserstoff meist unter Druck gelagert und transportiert wird, ist ein zu betrachtendes Szenario die Freisetzung aus einer Leckage mit anschließender Zündung. Die daraus resultierende Freistrahlflamme (Jet Flame) muss hinsichtlich der in die Umgebung emittierten Wärmestrahlung charakterisiert werden. In der Literatur existieren bereits verschiedene Modelle, welche jedoch vermehrt auf Daten aus Kohlenwasserstoffflammen mit geringem Impuls basieren. Zur Überprüfung dieser Modelle wird im Zuge des BAM internen H2 Jet Flame Projektes die sicherheitstechnische Untersuchung von impulsbehafteten Wasserstoff Freistrahlflammen vorgenommen. Hierfür finden Versuche im Realmaßstab auf dem Testgelände Technische Sicherheit der BAM (BAM-TTS) statt. Gegenstand der Untersuchungen ist die Beurteilung der Auswirkungen von realistischen Freisetzungsszenarien hinsichtlich der Flammengeometrie und der freigesetzten Wärmestrahlung. Dabei werden Parameter wie Freisetzungswinkel, Leckagedurchmesser (z.Zt. 1 mm bis 10 mm), Druck (z.Zt. bis max. 250 bar) und Massenstrom (bis max. 0,5 kg/s) variiert. Zusätzlich können auch Einflüsse wie Art der Zündung, Zündort sowie Zündung mit zeitlichem Verzug untersucht werden. Gewonnene Erkenntnisse werden mit den Ergebnissen bereits vorhandener Modelle verglichen und diese im Bedarfsfall weiterentwickelt. Insbesondere wird der Fokus auf die Modellierung der freigesetzten Wärmestrahlung von Wasserstoffflammen gelegt. Herausforderung dabei stellt die IR-Vermessung und Modellierung von Sichtmodellen der Flammen dar. Die Visualisierung der Flammengeometrie wird mit Hilfe mehrerer Infrarot Kamerasystemen (aus mindestens zwei Blickwinkeln) vorgenommen. Bisherige Messungen, die in der Literatur zu finden sind, basieren meist auf instationären Auströmbedingungen. Der hier verwendete Versuchsaufbau ermöglicht ein stationäres Ausströmen für mehrere Minuten und somit eine direkte Vergleichbarkeit mit den existierenden (stationären) Modellen. Weiterhin ist der Versuchsstand umrüstbar für Vergleichsmessungen mit Kohlenwasserstoffen (Methan etc.) sowie Mischungen aus Wasserstoff und Kohlenwasserstoffen. T2 - Magdeburg-Köthener Brandschutz- und Sicherheitstagung 2024 CY - Magdeburg, Germany DA - 14.03.2024 KW - Wärmestrahlung KW - Wassersoff KW - Freistrahlflamme PY - 2024 SN - 978-3-948749-42-2 SP - 137 EP - 146 CY - Magdeburg AN - OPUS4-59912 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernardy, Christopher A1 - Habib, Abdel Karim A1 - Kluge, Martin A1 - Schalau, Bernd A1 - Kant, Hanjo A1 - Schulze, Marcel A1 - Orchini, Alessandro ED - Nabizada, A. ED - Dechany, A. ED - B. Carré, B. ED - Stendardo, E. ED - Lappa, F. ED - Vanlaere, J. ED - Mendoza, M.J. ED - Dejonghe, M. ED - Daese, M. ED - Namazifard, N. ED - Jacops, R. ED - Jottrand, S. ED - Pahlavan, S. T1 - Real scale safety investigations of hydrogen jet flames at high pressure N2 - In order to reduce the human footprint of CO2 emissions and limit global warming effects hydrogen combustion is becoming increasingly important. To enable fuel cells and gas turbines to operates this carbon free fuel, unprecedently large amounts of hydrogen need to be produced and safely transported and stored. The investigation of the effects of accidents involving hydrogen is therefore becoming of outmost importance. Since hydrogen is usually stored and transported under pressure, one scenario to be considered is the release of hydrogen from a leakage with subsequent ignition. The resulting jet flame must be characterized with respect to the thermal radiation emitted into the environment to define safety regulations. Various models that characterize the resulting flame shape and radiation already exist in the literature, but these are mainly based on empirical data from hydrocarbon jet flames.[1-4] To verify these models, a H2 Jet Flame project conducted at BAM, is investigating the safety of momentum driven hydrogen jet flames. For this purpose, large-scale tests are carried out at the Test Site Technical Safety (BAM-TTS). The object of the investigations is to assess the effects of real scale release scenarios regarding flame geometry and the thermal radiation emitted. Parameters such as release angle, leakage diameter (currently 1 mm to 10 mm), pressure (currently up to max. 250 bar) and mass flow (up to max. 0.5 kg/s) are varied. In addition, influences such as the type of ignition, ignition location as well as delayed ignition can also be investigated. The gained knowledge will be compared with existing jet flame models, to validate these and identify a possible need for further development. In particular, the focus will be laid on the thermal radiation of hydrogen flames. The challenge here is the visualization and characterization of the flame geometry in an open environment. Visualization is performed using infrared (IR) camera systems from at least two viewing angles. Measurements of the heat radiation of jet flames, which can be found in the literature, are mostly based on unsteady outflow conditions. The experimental setup used here allows for the generation of a steady-state outflow for several minutes and thus a direct comparability with existing (steady-state) models. Furthermore, the tests can be carried out for comparative measurements with hydrocarbons (methane, etc.) as well as mixtures of hydrogen and hydrocarbons. T2 - European PhD Hydrogen Conference 2024 (EPHyC2024) CY - Gent, Belgium DA - 20.03.2024 KW - Thermal radiation KW - Release KW - Hydrogen KW - Jet flame PY - 2024 SP - 551 EP - 556 AN - OPUS4-59910 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernardy, Christopher A1 - Habib, Abdel Karim A1 - Kluge, Martin A1 - Schalau, Bernd A1 - Kant, Hanjo A1 - Schulze, Marcel A1 - Orchini, Alessandro T1 - Real scale safety investigations of hydrogen jet flames at high pressure N2 - In order to reduce the human footprint of CO2 emissions and limit global warming effects hydrogen combustion is becoming increasingly important. To enable fuel cells and gas turbines to operates this carbon free fuel, unprecedently large amounts of hydrogen need to be produced and safely transported and stored. The investigation of the effects of accidents involving hydrogen is therefore becoming of outmost importance. Since hydrogen is usually stored and transported under pressure, one scenario to be considered is the release of hydrogen from a leakage with subsequent ignition. The resulting jet flame must be characterized with respect to the thermal radiation emitted into the environment to define safety regulations. Various models that characterize the resulting flame shape and radiation already exist in the literature, but these are mainly based on empirical data from hydrocarbon jet flames.[1-4] To verify these models, a H2 Jet Flame project conducted at BAM, is investigating the safety of momentum driven hydrogen jet flames. For this purpose, large-scale tests are carried out at the Test Site Technical Safety (BAM-TTS). The object of the investigations is to assess the effects of real scale release scenarios regarding flame geometry and the thermal radiation emitted. Parameters such as release angle, leakage diameter (currently 1 mm to 10 mm), pressure (currently up to max. 250 bar) and mass flow (up to max. 0.5 kg/s) are varied. In addition, influences such as the type of ignition, ignition location as well as delayed ignition can also be investigated. The gained knowledge will be compared with existing jet flame models, to validate these and identify a possible need for further development. In particular, the focus will be laid on the thermal radiation of hydrogen flames. The challenge here is the visualization and characterization of the flame geometry in an open environment. Visualization is performed using infrared (IR) camera systems from at least two viewing angles. Measurements of the heat radiation of jet flames, which can be found in the literature, are mostly based on unsteady outflow conditions.The experimental setup used here allows for the generation of a steady-state outflow for several minutes and thus a direct comparability with existing (steady-state) models. Furthermore, the tests can be carried out for comparative measurements with hydrocarbons (methane, etc.) as well as mixtures of hydrogen and hydrocarbons. T2 - European PhD Hydrogen Conference 2024 (EPHyC2024) CY - Gent, Belgium DA - 20.03.2024 KW - Hydrogen KW - Release KW - Jet flame KW - Thermal radiation PY - 2024 AN - OPUS4-59908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernardy, Christopher A1 - Konert, Florian A1 - Popiela, Bartosz A1 - Sarif, Raduan T1 - H2Safety@BAM: Competence Center for safe hydrogen technologies N2 - Presentation of the competence center H2Safety@BAM at the European PhD Hydrogen Conference 2024 in Ghent, Belgium. T2 - European PhD Hydrogen Conference 2024 (EPHyC2024) CY - Ghent, Belgium DA - 20.03.2024 KW - H2safety KW - Hydrogen KW - Safety KW - Competence center PY - 2024 AN - OPUS4-59756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Tschirschwitz, Rico A1 - Bernardy, Christopher T1 - Aufbau eines Großversuchsstandes sowie Realisierung von Brandversuchen mit elektrischen Energiespeichern im Bereich bis 500 kWh - Schlussbericht zum Teilvorhaben BAM, Teil I: Kurzbericht N2 - Der Abschlussbericht stellt die wesentlichen Arbeitsschritte und Ergebnisse des Teilvorhabens der BAM im BMBF-Vorhaben SEE-2L vor. Im Rahmen dieses Vorhabens wurde auf dem Testgelände Technische Sicherheit (BAM TTS) ein Großversuchsstand für das thermische Durchgehen von Lithium-Batterien auf Modul- und Batterieebene entwickelt und aufgebaut. Im Zuge des Projektes konnte eine erste Versuchsserie zu den Auswirkungen des thermischen Durchgehens von Batteriemodulen durchgeführt werden. Der Abschlussbericht umfasst zwei Teile, im Teil I den Kurzbricht und im Teil II die eingehende Darstellung. KW - Thermisches Durchgehen KW - Auswirkungsbetrachtungen KW - Elektrische Energiespeicher KW - Stationäre Energiespeicher KW - Lithium-Ionen-Batterie PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600676 DO - https://doi.org/10.2314/KXP:1887873864 N1 - Das Projekt SEE-2L ist ein drittmittelfinanziertes Verbundvorhaben des BMBF, Förderkennzeichen 13N15493, Projektlaufzeit 01.02.2021 - 30.04.2023. SP - 1 EP - 20 PB - Technische Informationsbibliothek (TIB) CY - Hannover AN - OPUS4-60067 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Sarah-K. A1 - Saupe, Alexander A1 - Tschirschwitz, Rico A1 - Bernardy, Christopher A1 - Janßen, Marvin A1 - Amano, Kofi Owusu Ansah A1 - Krause, Ulrich T1 - Sicherheit elektrochemischer Energiespeicher – Ergebnisse aus dem Projekt SEE-2L N2 - Die Transformation der Energienutzung von konventionellen zu erneuerbaren Quellen führt dazu, dass zukünftig mehr Energie effizient zwischengespeichert werden muss. Eine Möglichkeit der elektrochemischen Zwischenspeicherung bieten Lithium-Ionen-Batterien. Hierfür können ausgemusterte Automobilantriebsbatterien verwendet werden. Erfüllen sie die hohen Anforderungen des mobilen Bereichs nicht mehr, haben sie oftmals noch eine ausreichende Kapazität und Leistungsfähigkeit für die stationäre Zwischenspeicherung. Neben der Verwendung der Batterien im größeren Maßstab, z.B. bei Energieversorgern, werden durch den vermehrten Einsatz von Photovoltaik-Anlagen in Ein- und Mehrfamilienhäusern verstärkt Zwischenspeicher für Privathaushalte nachgefragt. Dies birgt auch für Einsatzkräfte neue Herausforderungen in der Gefahrenabwehr. Im vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Verbundprojekt „SEE-2L – Sicherheit elektrochemischer Energiespeicher in Second Life Anwendungen“ wurden Versuche mit Second Life Modulen durchgeführt. Verbundpartner im Projekt waren neben der vfdb die Otto-von-Guericke-Universität Magdeburg und die Bundesanstalt für Materialforschung und -prüfung. Zudem war das Institut der Feuerwehr Nordrhein-Westfalen eingebunden. Die durchgeführten Versuche bilden eine Grundlage für die Einordnung der Batteriespeicher, z.B. aus Sicht des baulichen Brandschutzes, zur Methodik der Brandbekämpfung oder zur Risikobewertung hinsichtlich der Prozess- und Anlagensicherheit. Im Beitrag werden die Versuchsergebnisse vorgestellt und Ansätze für deren Anwendung gezeigt. Um die gewonnenen Erkenntnisse zu vermitteln, wurde im Projekt zudem ein Schulungskonzept für Einsätze mit Lithium-Ionen-Technologien erarbeitet, das im Beitrag präsentiert wird. Es besteht aus theoretischen und praktischen Anteilen, sodass bei den Feuerwehren praxisnah aus- bzw. fortgebildet werden kann. T2 - 70. Jahresfachtagung der vfdb CY - Magdeburg, Deutschland DA - 06.05.2024 KW - Auswirkungsbetrachtungen KW - Elektrische Energiespeicher KW - Lithium-Ionen-Batterie KW - Stationäre Energiespeicher KW - Thermisches Durchgehen PY - 2024 SN - 978-3-9360-5038-7 SP - 645 EP - 657 PB - vfdb, Vereinigung zur Förderung des Deutschen Brandschutzes e.V. CY - Münster AN - OPUS4-60068 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tschirschwitz, Rico A1 - Bernardy, Christopher T1 - Meilensteintreffen BMBF-Vorhaben SEE-2L, Teilvorhaben BAM: Aufbau eines Großversuchsstandes N2 - Der Vortrag stellt den aktuellen Bearbeitungsstand des Teilvorhabens an der BAM dar. Neben dem eigentlichen Aufbau werden auch Herausforderungen bei der Beschaffung der Einzelkomponenten sowie Ergebnisse aus der Literaturrecherches zu den Auswirkungen von Li-Batteriespeichern beim thermischen Durchgehen vorgestellt. Als Abschluss wird noch ein Ausblick auf die anstehenden Probeversuche gegeben. T2 - Meilensteintreffen zum BMBF-Vorhaben SEE-2L (Sicherheit elektrochemischer Energiespeicher in Second Life Anwendungen) CY - Online meeting DA - 01.02.2022 KW - Stationäre Energiespeicher KW - Elektrische Energiespeicher KW - Auswirkungsbetrachtungen PY - 2022 AN - OPUS4-54572 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tschirschwitz, Rico A1 - Bernardy, Christopher A1 - Wagner, Patrick A1 - Rappsilber, Tim A1 - Liebner, Christian A1 - Hahn, S.-K. A1 - Krause, U. T1 - Harmful effects of lithium-ion battery thermal runaway: scale-up tests from cell to second-life modules N2 - For a comprehensive safety assessment of stationary lithium-ion-battery applications, it is necessary to better understand the consequences of thermal runaway (TR). In this study, experimental tests comprising twelve TR experiments including four single-cell tests, two cell stack tests and six second-life module tests (2.65 kW h and 6.85 kW h) with an NMC-cathode under similar initial conditions were conducted. The temperature (direct at cells/modules and in near field), mass loss, cell/module voltage, and qualitative vent gas composition (Fourier transform infrared (FTIR) and diode laser spectroscopy (DLS) for HF) were measured. The results of the tests showed that the battery TR is accompanied by severe and in some cases violent chemical reactions. In most cases, TR was not accompanied by pregassing of the modules. Jet flames up to a length of 5 m and fragment throwing to distances to more than 30 m were detected. The TR of the tested modules was accompanied by significant mass loss of up to 82%. The maximum HF concentration measured was 76 ppm, whereby the measured HF concentrations in the module tests were not necessarily higher than that in the cell stack tests. Subsequently, an explosion of the released vent gas occurred in one of the tests, resulting in the intensification of the negative consequences. According to the evaluation of the gas measurements with regard to toxicity base on the “Acute Exposure Guideline Levels” (AEGL), there is some concern with regards to CO, which may be equally as important to consider as the release of HF. KW - Large-scale tests KW - Lithium-ion battery KW - Gas emission KW - Thermal runaway KW - Consequences PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579054 DO - https://doi.org/10.1039/D3RA02881J SN - 2046-2069 VL - 13 IS - 30 SP - 20761 EP - 20779 PB - Royal Society of Chemistry (RSC) CY - Cambridge, UK AN - OPUS4-57905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, S.-K. A1 - Tschirschwitz, Rico A1 - Bernardy, Christopher T1 - Forschung zur Sicherheit stationärer Energiespeicher - Zwischenspeicher als wichtiger Beitrag für eine erfolgreiche Energiewende N2 - Der Artikel stellt das BMBF-Vorhaben SEE-2L dar. Der Schwerpunkt liegt dabei auf dem Beitrag des Vorhabens für die Sicherheit von stationären Energiespeichern. Darüber hinaus wird aufgezeigt, welche Versuche bisher durchgeführt wurden und mit welchen Ergebnissen bis Projektende zu rechnen ist. KW - Stationäre Energiespeicher KW - Elektrische Energiespeicher KW - Auswirkungsbetrachtungen KW - Batterie KW - Thermal runaways PY - 2022 UR - https://www.behoerden-spiegel.de/e-mobility-magazin-2022/ SN - 1437-8337 VL - 2022 IS - Sonderheft E-Mobility Magazin 2022 SP - 23 EP - 24 PB - ProPress CY - Bonn AN - OPUS4-56401 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernardy, Christopher A1 - Habib, Abdel Karim A1 - Kluge, Martin A1 - Schalau, Bernd A1 - Kant, Hanjo A1 - Schulze, Marcel A1 - Orchini, Alessandro T1 - Thermal Radiation Investigations of Real-Scale Hydrogen Jet Flames at High Pressure N2 - In order to reduce global warming, the use of hydrogen as a renewable energy source is becoming more important. To enable this transition, unprecedently large amounts of hydrogen need to be safely transported and stored. Since hydrogen is usually stored and transported under pressure, one scenario to be considered is the release of hydrogen from a leakage with subsequent ignition. The resulting jet flame must be characterized with respect to the thermal radiation emitted into the environment to define safety distances. Various models that characterize the resulting flame shape and radiation already exist in the literature, but these are mainly based on empirical data from hydrocarbon jet flames. To verify the applicability of these models to hydrogen, real-scale tests are carried out at the BAM Test Site for Technical Safety (BAM-TTS) with the aim to assess the flame geometry and the emitted thermal radiation. Parameters such as leakage diameter (currently up to 30 mm), pressure (currently up to max. 250 bar) and mass flow (up to max. 0.5 kg/s) are varied. In particular, the focus will be laid on the measurement and modelling of the thermal radiation. The challenge here is the characterization of the flame geometry in an open environment and its impact on the thermal radiation. Existing heat radiation data from literature are mostly based on unsteady outflow conditions. The experimental setup used here allows for the generation of a steady-state outflow for several minutes and thus a direct comparability with existing (steady-state) models. Furthermore, stationary outflow tests with hydrocarbons (methane) were also carried out, which are intended to serve as reference tests for checking flame models based on hydrocarbon data. Following from the experimental investigations, modelling parameters such as the Surface Emissive Power (SEP) and the radiant heat fraction for hydrogen and methane will be compared to literature data. T2 - Center for Hydrogen Safety Americas Conference, American Institute of Chemical Engineers CY - Las Vegas, NV, USA DA - 21.05.2024 KW - Thermal radiation KW - Hydrogen KW - Release KW - Jet flame PY - 2024 AN - OPUS4-60195 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernardy, Christopher A1 - Habib, Abdel Karim A1 - Kluge, Martin A1 - Schalau, Bernd A1 - Schulze, Marcel A1 - Kant, Hanjo A1 - Orchini, Alessandro T1 - Wärmestrahlung von Freistrahlflammen N2 - Wasserstoff als Energieträger gewinnt zunehmend an Bedeutung. Die Untersuchung von Störfallauswirkungen mit Wasserstoff rückt somit stärker in den Fokus. Da Wasserstoff meist unter Druck gelagert und transportiert wird, ist ein zu betrachtendes Szenario die Freisetzung aus einer Leckage mit anschließender Zündung. Die daraus resultierende Freistrahlflamme (Jet Flame) muss hinsichtlich der in die Umgebung emittierten Wärmestrahlung charakterisiert werden. In der Literatur existieren bereits verschiedene Modelle ([1], [2]), welche jedoch vermehrt auf Daten aus Kohlenwasserstoffflammen mit geringem Impuls basieren. Zur Überprüfung dieser Modelle wird im Zuge des BAM internen H2 Jet Flame Projektes die sicherheitstechnische Untersuchung von impulsbehafteten Wasserstoff Freistrahlflammen vorgenommen. Hierfür finden Versuche im Realmaßstab auf dem Testgelände Technische Sicherheit der BAM (BAM-TTS) statt. Gegenstand der Untersuchungen ist die Beurteilung der Auswirkungen von realistischen Freisetzungsszenarien hinsichtlich der Flammengeometrie und der freigesetzten Wärmestrahlung. Dabei werden Parameter wie Freisetzungswinkel, Leckagedurchmesser (z.Zt. 1 mm bis 10 mm), Druck (z.Zt. bis max. 250 bar) und Massenstrom (bis max. 0,5 kg/s) variiert. Zusätzlich können auch Einflüsse wie Art der Zündung, Zündort sowie Zündung mit zeitlichem Verzug untersucht werden. Gewonnene Erkenntnisse werden mit den Ergebnissen bereits vorhandener Modelle verglichen und diese im Bedarfsfall weiterentwickelt. Insbesondere wird der Fokus auf die Modellierung der freigesetzten Wärmestrahlung von Wasserstoffflammen gelegt. Herausforderung dabei stellt die IR-Vermessung und Modellierung von Sichtmodellen der Flammen dar. Die Visualisierung der Flammengeometrie wird mit Hilfe mehrerer Infrarot Kamerasystemen (aus mindestens zwei Blickwinkeln) vorgenommen. Bisherige Messungen, die in der Literatur zu finden sind, basieren meist auf instationären Auströmbedingungen. Der hier verwendete Versuchsaufbau ermöglicht ein stationäres Ausströmen für mehrere Minuten und somit eine direkte Vergleichbarkeit mit den existierenden (stationären) Modellen. Weiterhin ist der Versuchsstand umrüstbar für Vergleichsmessungen mit Kohlenwasserstoffen (Methan etc.) sowie Mischungen aus Wasserstoff und Kohlenwasserstoffen. T2 - DECHEMA - Fachgruppe Auswirkungen von Stoff- und Energiefreisetzungen CY - Online meeting DA - 08.11.2023 KW - Freistrahlflamme KW - Wärmestrahlung KW - Wasserstoff KW - Methan PY - 2023 AN - OPUS4-60513 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernardy, Christopher A1 - Habib, Abdel Karim A1 - Kluge, Martin A1 - Schalau, Bernd A1 - Schulze, Marcel A1 - Kant, Hanjo A1 - Orchini, Alessandro T1 - Investigation of the thermal radiation from hydrogen jet flames N2 - For industrial applications dealing with hydrogen, the definition of safety distances and the assessment of possible hazards emanating from releases is mandatory. Since hydrogen is usually stored and transported under pressure, one scenario to be considered is the momentum driven release of hydrogen from a leakage with subsequent ignition. In this scenario, the emitted heat radiation from the resulting jet flame to the surroundings has to be determined to define adequate safety distances. For hydrocarbon flames, different jet flame models are available to assess the hazards resulting from an ignited jet release. Since hydrogen flames differ from hydrocarbon flames in their combustion behavior, it has to be checked if these models are also applicable for hydrogen. To evaluate the accuracy of these models for hydrogen jet flames, tests at real-scale are carried out at the BAM Test Site for Technical Safety (BAM-TTS). Herein, the flame geometry and the heat radiation at defined locations in the surroundings are recorded for varying release parameters such as leakage diameter (currently up to 30 mm), release pressure (currently up to max. 250 bar) and mass flow (up to max. 0.5 kg/s). The challenge here is the characterization of the flame geometry in an open environment and its impact on the thermal radiation. Existing heat radiation data from the literature are mostly based on unsteady outflow conditions. For a better comparability with the steady state jet flame models, the experiments presented here are focused on ensuring a constant mass flow over the release duration to obtain a (quasi) stationary jet flame. In addition, stationary outflow tests with hydrocarbons (methane) were also carried out, which are intended to serve as reference tests for checking flame models based on hydrocarbon data. T2 - 15th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions (ISHPMIE) CY - Naples, Italy DA - 10.06.2024 KW - Hydrogen KW - Release KW - Jet flame KW - Thermal radiation PY - 2024 AN - OPUS4-60512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bernardy, Christopher A1 - Habib, Abdel Karim A1 - Kluge, Martin A1 - Schalau, Bernd A1 - Schulze, Marcel A1 - Kant, Hanjo A1 - Orchini, Alessandro ED - Di Benedetto, Almerinda ED - Portarapillo, Maria T1 - Investigation of the thermal radiation from hydrogen jet flames N2 - For industrial applications dealing with hydrogen, the definition of safety distances and the assessment of possible hazards emanating from releases is mandatory. Since hydrogen is usually stored and transported under pressure, one scenario to be considered is the momentum driven release of hydrogen from a leakage with subsequent ignition. In this scenario, the emitted heat radiation from the resulting jet flame to the surroundings has to be determined to define adequate safety distances. For hydrocarbon flames, different jet flame models are available to assess the hazards resulting from an ignited jet release. Since hydrogen flames differ from hydrocarbon flames in their combustion behavior, it has to be checked if these models are also applicable for hydrogen. To evaluate the accuracy of these models for hydrogen jet flames, tests at real-scale are carried out at the BAM Test Site for Technical Safety (BAM-TTS). Herein, the flame geometry and the heat radiation at defined locations in the surroundings are recorded for varying release parameters such as leakage diameter (currently up to 30 mm), release pressure (currently up to max. 250 bar) and mass flow (up to max. 0.5 kg/s). The challenge here is the characterization of the flame geometry in an open environment and its impact on the thermal radiation. Existing heat radiation data from the literature are mostly based on unsteady outflow conditions. For a better comparability with the steady state jet flame models, the experiments presented here are focused on ensuring a constant mass flow over the release duration to obtain a (quasi) stationary jet flame. In addition, stationary outflow tests with hydrocarbons (methane) were also carried out, which are intended to serve as reference tests for checking flame models based on hydrocarbon data. T2 - 15th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions (ISHPMIE) CY - Neaples, Italy DA - 10.06.2024 KW - Hydrogen KW - Release KW - Jet flame KW - Thermal radiation PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-605107 DO - https://doi.org/10.5281/zenodo.12515710 VL - 2024 SP - 1322 EP - 1333 PB - Zenodo CY - Geneva AN - OPUS4-60510 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -