TY - CONF A1 - Maierhofer, Christiane A1 - Krankenhagen, Rainer A1 - Röllig, Mathias A1 - Heckel, Thomas A1 - Brackrock, Daniel A1 - Gaal, Mate T1 - Charakterisierung von Impactschäden während und nach dem Impact mit thermografischen Verfahren und mit Ultraschall N2 - Der Umfang der durch Impacts in Faserverbundmaterialien erzeugten Schäden ist abhängig von der Energie des Impacts, von der Zusammensetzung und dem Aufbau der Faserverbundwerkstoffe und von der Geometrie der Bauteile und hier im Wesentlichen von der Dicke des Bauteils. Der zerstörungsfreie Nachweis dieser Schädigungen kann sowohl mit Ultraschallverfahren als auch mit Verfahren der aktiven Thermografie erfolgen. Ein Vergleich der Nachweisempfindlichkeiten dieser Verfahren für die unterschiedlichen Schädigungen wird in diesem Beitrag in Abhängigkeit vom verwendeten Faserverbundwerkstoff (CFK und GFK), der Dicke des Materials und von der Impactenergie durchgeführt. Ergänzt werden die im Anschluss an die Schädigung eingesetzten ZfP-Verfahren mit zeitlich hochaufgelösten Thermografiemessungen, die bereits während des Impacts aufgenommen wurden. T2 - DGZfP Jahrestagung 2018 CY - Leipzig, Germany DA - 07.05.2018 KW - Thermografie KW - Ultraschall KW - Faserverbundwerkstoffe KW - Impactschäden PY - 2018 AN - OPUS4-44878 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Krankenhagen, Rainer A1 - Maierhofer, Christiane T1 - Corrigendum to "Measurement of the radiative energy output of flash lamps by means of thermal thin probes" [Infrared Phys. Technol. 67 (2014) 363-370] T2 - Infrared physics & technology N2 - This is a corrigendum to the original article "Measurement of the radiative energy output of flash lamps by means of thermal thin probes" that was published in the journal "Infrared physics & technology", vol. 67 (2014), pp. 363-370. PY - 2018 DO - https://doi.org/10.1016/j.infrared.2017.11.011 SN - 1350-4495 VL - 91 SP - 278 PB - Elsevier CY - Amsterdam AN - OPUS4-50505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ziegler, Mathias A1 - Maierhofer, Christiane A1 - Krankenhagen, Rainer A1 - Röllig, Mathias T1 - Characterization of defects in fibre reinforced composites (FRC) using passive and active thermography N2 - Impact damages and delaminations in fibre-reinforced composites (FRC) might not be visible at the surface, but could have an influence on the resistance and on the long-term behaviour of the component. Therefore, and especially for safety relevant structures, non-destructive methods are required for the assessment of such damages. Active thermography methods are suitable to characterize damages after loading using different kind of excitation techniques and various configurations of infrared (IR) camera and heating sources. Here, flash lamps, impulse excitation with infrared radiator and lock-in technique with halogen lamps or widened laser beams are suited. In addition, non-optical sources like sonotrodes (requiring direct contact to the structure) or induction generators (only suited for carbon fibre reinforced polymer (CFRP) structures) could be applied as well. For the investigation of the evolution of the damage during the impact, passive thermography can be applied in-situ. Elastic and plastic deformations alter the temperature of the structure and thus the temperature on the surface. In this contribution, at first the general principles of quantitative defect characterisation in FRC using active thermography with flash, impulse and lock-in excitation are described. Optical and thermal properties of the FRC material and its anisotropy are considered. Results of phase differences obtained at flat bottom holes with flash and lock-in thermography are compared for qualifying both methods for quantitative defect characterization. Secondly, the damage evolution of CFRP and GFRP structures under impact load and static tensile loading is described. The spatial and temporal evolution of the surface temperature enables us to distinguish matrix cracks or fibre-matrix separation from delaminations between the layers. Afterwards, all results for loading defects, obtained by passive and active thermography, are compared with each other. Fig. 1 and 2 show the difference of passive and flash thermography obtained at impact and tensile loaded CFRP plates, respectively. As one purpose of these investigations is the development of standards within national (DIN) and European (CEN) standardisation bodies, new draft and final standards are presented and further needs are discussed at the end of the presentation. T2 - INTERNATIONAL SCHOOL OF QUANTUM ELECTRONICS, 62nd Course, Progress in Photoacoustic & Photothermal Phenomena CY - Erice, Italy DA - 06.09.2018 KW - Thermography KW - Flash thermography KW - Lock-in thermography KW - CFRP KW - GFRP PY - 2018 AN - OPUS4-46283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernegger, Raphael A1 - Altenburg, Simon A1 - Roellig, Mathias A1 - Maierhofer, Christiane T1 - Applicability of a 1D analytical model for pulse thermography of laterally heterogeneous semitransparent materials JF - International Journal of Thermophysics N2 - Pulse thermography (PT) has proven to be a valuable non-destructive testing method to identify and quantify defects in fiber-reinforced polymers. To perform a quantitative defect characterization, the heat diffusion within the material as well as the material parameters must be known. The heterogeneous material structure of glass fiber-reinforced polymers (GFRP) as well as the semitransparency of the material for optical excitation sources of PT is still challenging. For homogeneous semitransparent materials, 1D analytical models describing the temperature distribution are available. Here, we present an analytical approach to model PT for laterally inhomogeneous semitransparent materials.We show the validity of the model by considering different configurations of the optical heating source, the IR camera, and the differently coated GFRP sample. The model considers the lateral inhomogeneity of the semitransparency by an additional absorption coefficient. It includes additional effects such as thermal losses at the samples surfaces, multilayer systems with thermal contact resistance, and a finite duration of the heating pulse. By using a sufficient complexity of the analytical model, similar values of the material parameters were found for all six investigated configurations by numerical fitting. KW - Absorption coefficient KW - Analytical model KW - GFRP KW - Heterogeneous KW - Pulse thermography KW - Semitransparent PY - 2018 DO - https://doi.org/10.1007/s10765-018-2362-7 SN - 0195-928X SN - 1572-9567 VL - 39 IS - 3 SP - Article 39, ICPPP 19, 1 EP - 17 PB - Springer International Publishing AG AN - OPUS4-44003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gumenyuk, Andrey T1 - Comparison of MWIR thermography and high-speed NIR thermography in a laser metal deposition (LMD) process T2 - Proceedings of Conference QIRT 2018 N2 - Additive manufacturing (AM) offers a range of novel applications. However, the manufacturing process is complex and the production of defect-free parts with high reliability and durability is still a challenge. Thermography is a valuable tool for process surveillance, especially in metal AM processes. The high process temperatures allow one to use cameras usually operating in the visible spectral range. Here, we compare the results of measurements during the manufacturing process of a commercial laser metal deposition setup using a mid-wavelength-IR camera with those from a visual spectrum high-speed camera with band pass filter in the near-IR range. T2 - Conference QIRT 2018 CY - Berlin, Germany DA - 25.06.2018 KW - Additive manufacturing KW - Laser metal deposition KW - ProMoAM KW - Thermography PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-454993 UR - http://www.qirt.org/archives/qirt2018/papers/p35.pdf DO - https://doi.org/10.21611/qirt.2018.p35 SP - 1 EP - 5 PB - QIRT Council CY - Quebec, Canada AN - OPUS4-45499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maierhofer, Christiane A1 - Krankenhagen, Rainer A1 - Altenburg, Simon A1 - Röllig, Mathias A1 - Myrach, Philipp T1 - Passive and active thermography applied to buildings and cultural heritage - Cracks and protection layers N2 - Artificial and natural cracks have been investigated with active and passive thermography. For the determination of the thickness of protection layers on concrete, an active thermography method has been developed. T2 - Short Courses of the QIRT 2018 Conference CY - Berlin, Germany DA - 25.6.2018 KW - Active themrography KW - Passive thermography KW - Cracks KW - Concrete PY - 2018 AN - OPUS4-45456 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai A1 - Mohr, Gunther A1 - Gumenyuk, Andrey A1 - Straße, Anne A1 - Pittner, Andreas A1 - Günster, Jens A1 - Gornushkin, Igor B. A1 - Pelkner, Matthias A1 - Ehlers, Henrik A1 - Heckel, Thomas A1 - Zscherpel, Uwe A1 - Seeger, Stefan A1 - Bruno, Giovanni T1 - ProMoAM - Verfahrensentwicklung für das Prozessmonitoring in der additiven Fertigung N2 - Verfahren zum in-situ Monitoring der Prozess- und Bauteilparameter sollen Fehlstellen und Inhomogenitäten bereits während der Fertigung nachweisen und zukünftig auch die Regelung der Prozessparameter ermöglichen. T2 - Challenges in Additive Manufacturing: Innovative Materials and Quality Control, Berlin Partner Workshop CY - Berlin, Germany DA - 12.09.2018 KW - Additive Fertigung KW - Prozessmonitoring KW - ProMoAM PY - 2018 AN - OPUS4-46300 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maierhofer, Christiane A1 - Thiel, Erik A1 - Altenburg, Simon A1 - Mohr, Gunther A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Paul, Andrea A1 - Kranzmann, Axel A1 - Hilgenberg, Kai A1 - Pittner, Andreas A1 - Bruno, Giovanni A1 - Sommer, Konstantin A1 - Gumenyuk, Andrey T1 - Quality control in additive manufacturing via in-situ monitoring and non-destructive testing N2 - More than 80 representatives of SMEs, industrial companies and research institutes met on September 12 at the workshop "Challenges in Additive Manufacturing: Innovative Materials and Quality Control" at BAM in Adlershof to discuss the latest developments in materials and quality control in additive manufacturing. In special lectures, researchers, users and equipment manufacturers reported on the latest and future developments in additive manufacturing. Furthermore, funding opportunities for projects between SMEs and research institutions on a national and European level were presented. T2 - Challenges in Additive Manufacturing: Innovative Materials and Quality Control CY - Berlin, Germany DA - 12.09.2018 KW - Additive manufacturing KW - Quality control KW - Non-destructive testing KW - In-situ monitoring PY - 2018 AN - OPUS4-46072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -