TY - JOUR A1 - Würth, Christian A1 - Grabolle, Markus A1 - Pauli, Jutta A1 - Spieles, Monika A1 - Resch-Genger, Ute T1 - Relative and absolute determination of fluorescence quantum yields of transparent samples JF - Nature protocols N2 - Luminescence techniques are among the most widely used detection methods in the life and material sciences. At the core of these methods is an ever-increasing variety of fluorescent reporters (i.e., simple dyes, fluorescent labels, probes, sensors and switches) from different fluorophore classes ranging from small organic dyes and metal ion complexes, quantum dots and upconversion nanocrystals to differently sized fluorophore-doped or fluorophore-labeled polymeric particles. A key parameter for fluorophore comparison is the fluorescence quantum yield (Φf), which is the direct measure for the efficiency of the conversion of absorbed light into emitted light. In this protocol, we describe procedures for relative and absolute determinations of Φf values of fluorophores in transparent solution using optical methods, and we address typical sources of uncertainty and fluorophore class-specific challenges. For relative determinations of Φf, the sample is analyzed using a conventional fluorescence spectrometer. For absolute determinations of Φf, a calibrated stand-alone integrating sphere setup is used. To reduce standard-related uncertainties for relative measurements, we introduce a series of eight candidate quantum yield standards for the wavelength region of ~350–950 nm, which we have assessed with commercial and custom-designed instrumentation. With these protocols and standards, uncertainties of 5–10% can be achieved within 2 h. PY - 2013 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-294202 DO - https://doi.org/10.1038/nprot.2013.087 SN - 1754-2189 SN - 1750-2799 VL - 8 IS - 8 SP - 1535 EP - 1550 PB - Nature Publishing Group CY - Basingstoke AN - OPUS4-29420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Borisov, S.M. A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Klimant, I. T1 - New life of ancient pigments: Application in high-performance optical sensing materials JF - Analytical chemistry N2 - Calcium, strontium, and barium copper silicates are demonstrated to possess valuable photophysical properties which make them particularly attractive for application in optical chemosensors. Several examples of sensing materials based on these phosphors are provided. Particularly, broad excitation and near-infrared emission makes them ideal candidates for the preparation of ratiometric sensors based on absorption-based indicators. Due to their excellent chemical and photochemical stability and high brightness, these phosphors can serve as reference for fluorescent indicators to enable ratiometric intensity or dually lifetime referenced measurements. Finally, the moderate temperature dependence of the luminescence decay time enables intrinsic temperature compensation of the sensing materials at ambient temperatures. The improved sensitivity at temperatures above 100 °C makes these new materials promising candidates for high-temperature thermographic phosphors. PY - 2013 DO - https://doi.org/10.1021/ac402275g SN - 0003-2700 SN - 1520-6882 VL - 85 SP - 9371 EP - 9377 PB - American Chemical Society CY - Washington, DC AN - OPUS4-29419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Behnke, Thomas A1 - Mathejczyk, J.E. A1 - Brehm, Robert A1 - Würth, Christian A1 - Gomes, F.R. A1 - Dullin, C. A1 - Napp, J. A1 - Alves, F. A1 - Resch-Genger, Ute T1 - Target-specific nanoparticles containing a broad band emissive NIR dye for the sensitive detection and characterization of tumor development JF - Biomaterials N2 - Current optical probes including engineered nanoparticles (NPs) are constructed from near infrared (NIR)-emissive organic dyes with narrow absorption and emission bands and small Stokes shifts prone to aggregation-induced self-quenching. Here, we present the new asymmetric cyanine Itrybe with broad, almost environment-insensitive absorption and emission bands in the diagnostic window, offering a unique flexibility of the choice of excitation and detection wavelengths compared to common NIR dyes. This strongly emissive dye was spectroscopically studied in different solvents and encapsulated into differently sized (15, 25, 100 nm) amino-modified polystyrene NPs (PSNPs) via a one-step staining procedure. As proof-of-concept for its potential for pre-/clinical imaging applications, Itrybe-loaded NPs were surface-functionalized with polyethylene glycol (PEG) and the tumor-targeting antibody Herceptin and their binding specificity to the tumor-specific biomarker HER2 was systematically assessed. Itrybe-loaded NPs display strong fluorescence signals in vitro and in vivo and Herceptin-conjugated NPs bind specifically to HER2 as demonstrated in immunoassays as well as on tumor cells and sections from mouse tumor xenografts in vitro. This demonstrates that our design strategy exploiting broad band-absorbing and -emitting dyes yields versatile and bright NIR probes with a high potential for e.g. the sensitive detection and characterization of tumor development and progression. KW - Nanoparticle KW - Fluorescence KW - In vitro test KW - In vivo test KW - Surface modification KW - Cytotoxicity PY - 2013 DO - https://doi.org/10.1016/j.biomaterials.2012.09.028 SN - 0142-9612 VL - 34 IS - 1 SP - 160 EP - 170 PB - Elsevier CY - Oxford AN - OPUS4-26877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -