TY - JOUR A1 - Hennig, Andreas A1 - Borcherding, H. A1 - Jäger, Christian A1 - Hatami, Soheil A1 - Würth, Christian A1 - Hoffmann, Angelika A1 - Hoffmann, Katrin A1 - Thiele, T. A1 - Schedler, U. A1 - Resch-Genger, Ute T1 - Scope and limitations of surface functional quantification methods: exploratory study with poly(acrylic acid)-grafted micro- and nanoparticles JF - Journal of the American chemical society N2 - The amount of grafted poly(acrylic acid) on poly(methyl methacrylate) micro- and nanoparticles was quantified by conductometry, 13C solid-state NMR, fluorophore labeling, a supramolecular assay based on high-affinity binding of cucurbit[7]uril, and two colorimetric assays based on toluidine blue and nickel complexation by pyrocatechol violet. The methods were thoroughly validated and compared with respect to reproducibility, sensitivity, and ease of use. The results demonstrate that only a small but constant fraction of the surface functional groups is accessible to covalent surface derivatization independently of the total number of surface functional groups, and different contributing factors are discussed that determine the number of probe molecules which can be bound to the polymer surface. The fluorophore labeling approach was modified to exclude artifacts due to fluorescence quenching, but absolute quantum yield measurements still indicate a major uncertainty in routine fluorescence-based surface group quantifications, which is directly relevant for biochemical assays and medical diagnostics. Comparison with results from protein labeling with streptavidin suggests a porous network of poly(acrylic acid) chains on the particle surface, which allows diffusion of small molecules (cutoff between 1.6 and 6.5 nm) into the network. KW - Polymers KW - Surface groups KW - Quantification KW - Fluorescence PY - 2012 DO - https://doi.org/10.1021/ja302649g SN - 0002-7863 SN - 1520-5126 VL - 134 IS - 19 SP - 8268 EP - 8276 PB - American Chemical Society CY - Washington, DC AN - OPUS4-26002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Lochmann, Cornelia A1 - Spieles, Monika A1 - Pauli, Jutta A1 - Hoffmann, Katrin A1 - Schüttrigkeit, T. A1 - Franzl, T. A1 - Resch-Genger, Ute T1 - Evaluation of a commercial integrating sphere setup for the determination of absolute photoluminescence quantum yields of dilute dye solutions JF - Applied spectroscopy N2 - The commercial availability of stand-alone setups for the determination of absolute photoluminescence quantum yields (φf) in conjunction with the increasing use of integrating sphere accessories for spectrofluorometers is expected to have a considerable influence not only on the characterization of chromophore systems for use in optical and opto-electronic devices, but also on the determination of this key parameter for (bio)analytically relevant dyes and functional luminophores. Despite the huge potential of systems measuring absolute φf values and the renewed interest in dependable data, evaluated protocols for even the most elementary case, the determination of the fluorescence quantum yield of transparent dilute solutions of small organic dyes with integrating sphere methods, are still missing. This encouraged us to evaluate the performance and sources of uncertainty of a simple commercial integrating sphere setup with dilute solutions of two of the best characterized fluorescence quantum yield standards, quinine sulfate dihydrate and rhodamine 101, strongly differing in spectral overlap between absorption and emission. Special attention is dedicated to illustrate common pitfalls of this approach, thereby deriving simple procedures to minimize measurement uncertainties and improve the comparability of data for the broad community of users of fluorescence techniques. KW - Lifetime KW - Fluorescence KW - Luminescence KW - Quantum yield KW - Quantum efficiency KW - Integrating sphere KW - Reabsorption KW - Rhodamine 101 KW - Quinine sulfate dihydrate KW - Method KW - Photoluminescence KW - Standard KW - Emission KW - Spectral correction KW - Excitation KW - Anisotropy PY - 2010 DO - https://doi.org/10.1366/000370210791666390 SN - 0003-7028 SN - 1943-3530 VL - 64 IS - 7 SP - 733 EP - 741 PB - Society for Applied Spectroscopy CY - Frederick, Md. AN - OPUS4-22089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Behnke, Thomas A1 - Würth, Christian A1 - Laux, Eva-Maria A1 - Hoffmann, Katrin A1 - Resch-Genger, Ute T1 - Simple strategies towards bright polymer particles via one-step staining procedures JF - Dyes and pigments N2 - In order to develop simple and versatile procedures for the preparation of red emissive particles, various one-step swelling procedures for the loading of fluorophores into nanometer- and micrometer-sized polystyrene particles were systematically assessed. Parameters studied for model dyes from common dye classes include the composition of the swelling medium, dye charge and polarity, dye concentration, and particle surface chemistry. The dye loading procedures were compared based upon the efficiency of dye incorporation, fluorescence intensity, and colloidal stability of the resulting particles as well as the absence of dye leaking as determined by absorption and fluorescence spectroscopy, flow cytometry, and measurements of zeta potentials. In addition, for the first time, the influence of the amount of incorporated dye on the absolute fluorescence quantum yield and brightness of the fluorescent particles was investigated for selected chromophores in differently sized particles using a custom-made calibrated integrating sphere setup. Our results demonstrate the general suitability of these one-step loading procedures for efficient particle staining with neutral, zwitterionic, and charged fluorophores like oxazines, coumarines, squaraines, xanthenes, and cyanines emitting in the visible and near infrared. Dye polarity was identified as a suitable tool to estimate the loading efficiency of fluorophores into these polymer particles. KW - Fluorescence KW - Polystyrene KW - Particles KW - Encapsulation KW - Quantum yield KW - Zeta potential KW - Method KW - Label KW - Particle KW - Polymer KW - Absolute fluorescence quantum yield KW - Fluorophore KW - Dye content KW - Surface groups KW - Size KW - Brightness PY - 2012 DO - https://doi.org/10.1016/j.dyepig.2012.01.021 SN - 0143-7208 SN - 1873-3743 VL - 94 IS - 2 SP - 247 EP - 257 PB - Elsevier Ltd. CY - Kidlington AN - OPUS4-25481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Hoffmann, Katrin A1 - Würth, Christian A1 - Behnke, Thomas A1 - Hoffmann, Angelika A1 - Pfeifer, Dietmar A1 - Engel, A. T1 - The toolbox of fluorescence standards: Flexible calibration tools for the standardization of fluorescence-based measurements JF - Proceedings / SPIE : P N2 - To improve the reliability of fluorescence data in the life and material sciences and to enable accreditation of fluorescence techniques, standardization concepts are required that guarantee and improve the comparability of fluorescence measurements. At the core of such concepts are simple and evaluated fluorescence standards for the consideration of instrument-specific spectral and intensity distortions of measured signals and for instrument performance validation (IPV). Similarly in need are fluorescence intensity standards for the quantification from measured intensities and for signal referencing, thereby accounting for excitation light-induced intensity fluctuations. These standards should be preferably certified, especially for use in regulated areas like medical diagnostics. This encouraged us to develop liquid and solid standards for different fluorescence parameters and techniques for use under routine measurement conditions in different formates. Special emphasis was dedicated to the determination and control of the spectral responsivity of detection systems, wavelength accuracy, homogeneity of illumination, and intensity referencing for e.g. spectrofluorometers, fluorescence sensors and confocal laser scanning fluorescence microscopes. Here, we will present design concepts and examples for mono- and multifunctional fluorescence standards that provide traceability to radiometric units and present a first step towards a toolbox of standards. KW - Fluorescence KW - Fluorescence standard KW - Calibration tool KW - Spectral fluorescence standard KW - Intensity standard KW - Instrument performance validation KW - Quality assurance KW - Traceability KW - Glass KW - Liquid standard PY - 2010 DO - https://doi.org/10.1117/12.853133 SN - 0277-786X SN - 0038-7355 SN - 0361-0748 VL - 7666 IS - 76661J SP - 1 EP - 12 PB - Soc. CY - Redondo Beach, Calif. [u.a.] AN - OPUS4-21595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Behnke, Thomas A1 - Brehm, Robert A1 - Grabolle, Markus A1 - Hennig, Andreas A1 - Hoffmann, Angelika A1 - Hoffmann, Katrin A1 - Linck, Lena A1 - Lochmann, Cornelia A1 - Pauli, Jutta A1 - Spieles, Monika A1 - Würth, Christian T1 - Funktionelle Chromophor-Systeme, innovative Validierungskonzepte und rückführbare Standards für die fluoreszenzbasierte multiparametrische Bioanalytik T2 - 5. Senftenberger Innovationsforum Multiparameteranalytik (Proceedings) N2 - Unter dem Motto „Innovation und Qualitätssicherung in der (Bio)Analytik“ werden in der Arbeitsgruppe Fluoreszenzspektroskopie der BAM, Bundesanstalt für Materialforschung und -prüfung, funktionelle Chromophor-Systeme, einfache Signalverstärkungs- und Multiplexingstrategien sowie innovative Validierungs- und rückführbare Standardisierungskonzepte für verschiedene fluorometrische Messgrößen und Methoden entwickelt. Im Mittelpunkt stehen dabei molekulare Fluorophore, Nanokristalle mit größenabhängigen optischen Eigenschaften (sogenannte Quantenpunkte, QDs) und fluoreszierende Partikel variabler Größe sowie Sonden und Sensormoleküle für neutrale und ionische Analyte und für die Charakterisierung von funktionellen Gruppen. Dabei erfolgen auch methodische Entwicklungen für die Fluoreszenzspektroskopie, die Fluoreszenzmikroskopie, die Milcrofluorometrie, die Sensorik und die Mikroarraytechnologie. Ziele sind u. a. das Design und die Untersuchung von multiplexfähigen selektiven und sensitiven Sonden für die Biomarkeranalytik, die Entwicklung von Methoden zur Charakterisierung der signalrelevanten Eigenschaften dieser Chromophor-Systeme und zur Charakterisierung von funktionellen Gruppen an Oberflächen und ihre Validierung sowie die Entwicklung und Bereitstellung von formatadaptierbaren, flexibel ersetzbaren Standards für die fluoreszenzbasierte Multiparameteranalytik. T2 - 5. Senftenberger Innovationsforum Multiparameteranalytik CY - Senftenberg, Deutschland DA - 10.03.2011 KW - Multiparametric KW - Multiplexing KW - Fluorescence KW - Nanoparticles KW - NIR dyes KW - Surface analysis KW - Quantum yield KW - Quantum dot KW - Lifetime PY - 2011 SP - 86 EP - 108 CY - Senftenberg AN - OPUS4-23635 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Hoffmann, Katrin A1 - Behnke, Thomas A1 - Ohnesorge, Marius A1 - Resch-Genger, Ute T1 - Polymer- and glass-based fluorescence standards for the near infrared (NIR) spectral region JF - Journal of fluorescence N2 - The widespread use and acceptance of fluorescence techniques especially in regulated areas like medical diagnostics is closely linked to standardization concepts that guarantee and improve the comparability and reliability of fluorescence measurements. At the core of such concepts are dependable fluorescence standards that are preferably certified. The ever rising interest in fluorescence measurements in the near-infrared (NIR) spectral region renders the availability of spectral and intensity standards for this wavelength region increasingly important. This encouraged us to develop approaches to solid NIR standards based upon dye-doped polymers and assess their applicationrelevant properties in comparison to metal ion-doped glasses. The overall goal is here to provide inexpensive, easily fabricated, and robust internal and external calibration tools for a broad variety of fluorescence instruments ranging e.g. from spectrofluorometers over fluorescence microscopes to miniaturized fluorescence sensors. KW - Fluorescence standard KW - PMMA KW - Photostability KW - Perylene KW - Rhodamine 800 KW - Dye-doped polymers KW - Glass KW - Laser dye PY - 2011 DO - https://doi.org/10.1007/s10895-010-0650-0 SN - 1053-0509 SN - 1573-4994 VL - 21 IS - 3 SP - 953 EP - 961 PB - Plenum Publ. Corp. CY - New York, NY AN - OPUS4-22184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, Jutta A1 - Hoffmann, Katrin A1 - Würth, Christian A1 - Behnke, Thomas A1 - Resch-Genger, Ute T1 - Standardization of fluorescence measurements in the UV/vis/NIR/IR JF - Standardization of Fluorescence Measurements in the UV/vis/NIR/IR N2 - Photoluminescence techniques are amongst the most widely used Tools in the life sciences, with new and exciting applications in medical diagnostics and molecular Imaging continuously emerging. Advantages include their comparative ease of use, unique sensitivity, non-invasive character, and potential for Multiplexing, remote sensing, and miniaturization. General drawbacks are, however, signals, that contain unwanted wavelength- and polarization contributions from Instrument-dependent effects, which are also time-dependent due to aging of Instrument-components, and difficulties to measure absolute flourescence entensities. Moreover, scattering Systems require Special measurement geometries and the interest in new optical Reporters with Emission > 1000 nm strategies for reliable measurements in the second diagnostic for the comparison of material Performance and the rational designg of new flourophores with improved properties. Here, we present strategies to versatile method-adaptable liquid and solid flourescence Standards for different flourescence paramters including traceable Instrument calibration procedures and the design of integrating spere setups for the absolute measurements of emission spectra and Quantum yields in the wavelength Region of 350 to 1600 nm. Examples are multi-Emitter glasses, spectral flourescence Standards, and quantum yield Standards for the UV/vis/NIR. T2 - Conference on Molecular-Guided Surgery - Molecules, Devices, and Applications III CY - San Francisco, CA, USA DA - 28.01.2017 KW - Fluorescence KW - Reference material KW - Standard KW - Calibration KW - Nanoparticle KW - Absolute flourometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Quantum yield standard KW - Emission standards PY - 2017 SN - 978-1-5106-0539-8 DO - https://doi.org/10.1117/12.2255728 SN - 0277-786X VL - 10049 SP - 1 PB - Proceedings of SPIE AN - OPUS4-41783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Behnke, Thomas A1 - Würth, Christian A1 - Hoffmann, Katrin A1 - Hübner, Martin A1 - Panne, Ulrich A1 - Resch-Genger, Ute T1 - Encapsulation of hydrophobic dyes in polystyrene micro- and nanoparticles via swelling procedures JF - Journal of fluorescence N2 - Aiming at the derivation of a generalized procedure for the straightforward preparation of particles fluorescing in the visible and near-infrared (NIR) spectral region, different swelling procedures for the loading of the hydrophobic polarity-probe Nile Red into nano- and micrometer sized polystyrene particles were studied and compared with respect to the optical properties of the resulting particles. The effect of the amount of incorporated dye on the spectroscopic properties of the particles was investigated for differently sized beads with different surface chemistries, i.e., non-functionalized, aminomodified and PEG-grafted surfaces. Moreover, photostability and leaking studies were performed. The main criterion for the optimization of the dye loading procedures was a high and thermally and photochemically stable fluorescence output of the particles for the future application of these systems as fluorescent labels. KW - Fluorescence KW - Nile red KW - Polystyrene KW - Nanoparticles KW - Microparticles KW - Encapsulation KW - Swelling PY - 2011 DO - https://doi.org/10.1007/s10895-010-0632-2 SN - 1053-0509 SN - 1573-4994 VL - 21 IS - 3 SP - 937 EP - 944 PB - Plenum Publ. Corp. CY - New York, NY AN - OPUS4-22692 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -