TY - JOUR A1 - Ahiboz, D. A1 - Andresen, Elina A1 - Manley, P. A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Becker, C. T1 - Metasurface-Enhanced Photon Upconversion upon 1550 nm Excitation N2 - Photon upconversion upon 1550 nm excitation is of high relevance for applications in the third biological excitation window, for photovoltaics beyond current limitations, and enables appealing options in the field of glass Fiber telecommunications. Trivalent doped erbium ions (Er3+) are the material of choice for 1550 nm excited upconversion, however, they suffer from a low absorption cross-section and a low brightness. Therefore, the ability of Silicon metasurfaces to provide greatly enhanced electrical near-fields is employed to enable efficient photon upconversion even at low external Illumination conditions. Hexagonally shaped β-NaYF4:Er3+ nanoparticles are placed on large-area silicon metasurfaces designed to convert near-infrared (1550 nm) to visible light. More than 2400-fold enhanced photon upconversion luminescence is achieved by using this metasurface instead of a planar substrate. With the aid of optical simulations based on the finite-element method, this result is attributed to the coupling of the excitation source with metasurface resonances at appropriate incident angles. Analysis of the excitation power density dependence of upconversion luminescence and red-to-green-emission ratios enables the estimation of nanoscale near-field enhancement on the metasurface. The findings permit the significant reduction of required external excitation intensities for photon upconversion of 1550 nm light, opening perspectives in biophotonics, telecommunication, and photovoltaics. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Excitation power density KW - Single particle KW - Brightness KW - NIR KW - Mechanism KW - Single enhancement KW - SWIR KW - Method PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-537193 SN - 2195-1071 VL - 9 IS - 24 SP - 2101285 PB - Wiley-VCH-GmbH AN - OPUS4-53719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Pauli, Jutta A1 - Weigert, Florian T1 - Quantitative optical-spectroscopic characterization of luminescent nanomaterials - Photoluminescence Quantum Yields N2 - Accurate and quantitative photoluminescence measurements are mandatory for the comparison of different emitter classes and the rational design of the next generation of molecular and nanoscale reporters as well as for most applications relying on their luminescence features in the life and material sciences and nanobiophotonics. In the following, procedures for the determination of the spectroscopic key parameter photoluminescence quantum yield, i.e., the number of emitted per absorbed photons, in the UV/vis/NIR/SWIR are presented including pitfalls and achievable uncertainties and material-specific effects related to certain emitter classes are addressed. Special emphasis is dedicated to luminescent nanocrystals. T2 - International Workshop on "Emerging Nanomaterials for Displays and SSL" CY - Dresden, Germany DA - 11.11.2021 KW - Nano KW - Nanomaterial KW - Nanocrystal KW - Semiconductor quantum dot KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Surface chemistry KW - Brightness KW - NIR KW - SWIR KW - Method KW - Uncertainty KW - Rreference material PY - 2021 AN - OPUS4-53783 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahiboz, D. A1 - Andresen, Elina A1 - Manley, P. A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Becker, C. T1 - Enhanced photon upconversion using erbium-doped nanoparticles interacting with silicon metasurfaces N2 - Photon upconversion (UC) using trivalent erbium (Er+3) doped crystals is a promising concept to harness near infrared photons of the solar spectrum which cannot be directly absorbed by silicon solar cells. However, their UC efficiency at low-intensity 1 sun illumination is not relevant on device level so far. Exploiting giant near-field enhancement effects on metasurfaces is an appealing approach to enable efficient UC at low irradiance conditions. Here, we report on more than 1000-fold enhanced photon UC of NaYF4:Er+3 nanoparticles interacting with the near-fields supported by a silicon metasurface under 1550 nm excitation. T2 - 48th Photovoltaic Specialists Conference (PVSC) CY - Online meeting DA - 20.06.2021 KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Excitation power density KW - Brightness KW - NIR KW - Mechanism KW - Modeling KW - Simulation KW - Energy transfer KW - Photonic crystal KW - Enhancement strategy PY - 2021 U6 - https://doi.org/10.1109/pvsc43889.2021.9518495 SP - 1 EP - 3 PB - IEEE CY - Berlin AN - OPUS4-53786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Würth, Christian A1 - Güttler, Arne A1 - Resch-Genger, Ute T1 - Reliable Determination of the Signal-Relevant Spectroscopic Key Characteristics of Luminescent Reporters and Optical Probes for Imaging in the vis/NIR/SWIR N2 - Introduction. Comparing different emitter classes and rationally designing the next generation of molecular and nanoscale probes for bioimaging applications require accurate and quantitative methods for the measurement of the key parameter photoluminescence quantum yield f.1 f equals the number of emitted per number of absorbed photons. This is particularly relevant for increasingly used fluorescence imaging in the short wave-infrared region (SWIR) ≥ 900 nm providing deeper penetration depths, a better image resolution, and an improved signal-to-noise or tumor-to-background ratio.2, 3 However, spectroscopic measurements in the SWIR are more challenging and require specific calibrations and standards. T2 - EMIM 2021 CY - Göttingen, Germany DA - 24.08.2021 KW - Fluorescence KW - Optical probe KW - Dye KW - Photophysics KW - Quantum yield KW - Mechanism KW - NIR KW - SWIR KW - Imaging KW - Reference material KW - Reliability KW - Nano KW - Particle KW - Method KW - Quality assurance PY - 2021 AN - OPUS4-53233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, R. A1 - Fa, X. A1 - Yang, J. A1 - Cheng, Z. A1 - Qiao, X. A1 - Ou, J. A1 - Würth, Christian A1 - Resch-Genger, Ute T1 - Core−Shell NaYF4:Yb3+/Tm3+@NaGdF4:Ce3+/Eu3+ Nanoparticles for Upconversion and Downconversion Dual-Mode Fluorescence-Based Temperature Sensing N2 - NaYF4 as the core and NaGdF4 as the outer layer were used to obtain NaYF4:Yb3+/Tm3+@NaYF4:Ce3+/Eu3+ nanoparticles. Physical and morphological investigations indicated that the obtained nanoparticles were prepared in a hexagonal shape, with the NaGdF4 shell layer uniformly encapsulated on the NaYF4 core. Strong Tm3+ upconversion emission peaks were observed for a 980-nm-laser-excited sample, while strong Eu3+ downconversion emission peaks were observed for a 254-nm-laser-excited sample. By zonal doping of Tm3+ and Eu3+, their fluorescence intensity can be significantly increased; more importantly, simultaneous temperature measurements with dual-mode upconversion/downconversion can be achieved. The temperature measurement properties of the dual mode were also investigated, and it was discovered that the upconversion 3F3 → 3H6 and 1G4 → 3F4 thermocouple energy levels gave the best temperature measurements with maximum absolute and relative sensitivities of 0.0877 K−1 and 1.95% K−1, respectively, which are better than the current temperature measurement sensitivities of most rare-earth-based materials. This material was prepared as fiber-optic temperature-sensing probes to detect the temperature in the environment in real time and was found to perform excellently for temperature measurement. KW - Upconversion nanoparticle KW - Lanthanide KW - Sensing; temperature KW - Photophysics PY - 2022 U6 - https://doi.org/10.1021/acsanm.2c01611 VL - 5 IS - 7 SP - 9266 EP - 9276 PB - American Chemical Society AN - OPUS4-55363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Monks, M.-J. A1 - Würth, Christian A1 - Kemnitz, Erhard A1 - Resch-Genger, Ute T1 - Dopant ion concentration-dependent upconversion luminescence of cubic SrF2:Yb3+, Er3+ nanocrystals prepared by a fluorolytic sol–gel method N2 - A fluorolytic sol–gel method was used for the fast and simple synthesis of small cubic-phase SrF2:Yb3+, Er3+ upconversion (UC) nanocrystals (UCNC) of different composition at room temperature. Systematic studies of the crystal phase and particle size of this Yb3+,Er3+-concentration series as well as excitation power density (P)-dependent UC luminescence (UCL) spectra, UCL quantum yields (ΦUCL), and UCL decay kinetics yielded maximum UCL performance for doping amounts of Yb3+ of 13.5% and Er3+ of 1.3% in the studied doping and P-range (30–400 W cm−2). Furthermore, ΦUCL were determined to be similar to popular β-NaYF4:Yb3+,Er3+. The relative spectral UCL distributions revealed that all UCNC show a strong red emission in the studied doping and P-range (30–400 W cm−2) and suggest that the UCL quenching pathway for unshelled cubic-phase SrF2:Yb3+,Er3+ UCNC differs from the commonly accepted population and depopulation pathways of β-NaYF4:Yb3+,Er3+ UCNC. In SrF2:Yb3+,Er3+ UCNC the 4S3/2 → 4I13/2 transition exhibits a notably stronger sensitivity towards P and reveals increasing values for decreasing Yb3+–Yb3+ distances while the 4I9/2 → 4I15/2 transition is significantly less affected by P and energy migration facilitated UCL quenching. These results emphasize the complexity of the UC processes and the decisive role of the crystal phase and symmetry of the host lattice on the operative UCL quenching mechanism in addition to surface effects. Moreover, the room temperature UCNC synthesis enabled a systematic investigation of the influence of the calcination temperature on the crystal phase of powder-UCNC and the associated UCL properties. Calcination studies of solid UCNC of optimized doping concentration in the temperature range of 175 °C and 800 °C showed the beneficial influence of temperature- induced healing of crystal defects on UCL and the onset of a phase separation connected with the oxygenation of the lanthanide ions at elevated temperature. This further emphasizes the sensitivity of the UC process to the crystal phase and quality of the host matrix. KW - Upconversion nanoparticle KW - Lanthanide KW - Photophysics KW - Synthesis PY - 2022 U6 - https://doi.org/10.1039/d2nr02337g SP - 1 EP - 10 PB - Royal Society of Chemistry AN - OPUS4-55364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tan, M. A1 - Monks, Melissa-Jane A1 - Huang, D. A1 - Meng, Y. A1 - Chen, X. A1 - Zhou, Y A1 - Lom, S.-F. A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Chen, G. T1 - Efficient sub-15 nm cubic-phase core/Shell upconversion nanoparticles as reporters for ensemble and single particle studies† N2 - Single particle imaging of upconversion nanoparticles (UCNPs) has typically been realized using hexagonal (β) phase lanthanide-doped sodium yttrium fluoride (NaYF4) materials, the upconversion luminescence (UCL) of which saturates at power densities (P) of several hundred W cm−2 under 980 nm nearinfrared (NIR) excitation. Cubic (α) phase UCNPs have been mostly neglected because of their commonly observed lower UCL efficiency at comparable P in ensemble level studies. Here, we describe a set of sub-15 nm ytterbium-enriched α-NaYbF4:Er3+@CaF2 core/shell UCNPs doped with varying Er3+ concentrations (5–25%), studied over a wide P range of ∼8–105 W cm−2, which emit intense UCL even at a low P of 10 W cm−2 and also saturate at relatively low P. The highest upconversion quantum yield (ΦUC) and the highest particle brightness were obtained for an Er3+ dopant concentration of 12%, reaching the highest ΦUC of 0.77% at a saturation power density (Psat) of 110 W cm−2. These 12%Er3+-doped core/shell UCNPs were also the brightest UCNPs among this series under microscopic conditions at high P of ∼102–105 W cm−2 as demonstrated by imaging studies at the single particle level. Our results underline the potential applicability of the described sub-15 nm cubic-phase core/shell UCNPs for ensemble- and single particle- level bioimaging. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Surface chemistry KW - Single particle KW - Brightness PY - 2020 U6 - https://doi.org/10.1039/d0nr02172e VL - 12 IS - 19 SP - 10592 EP - 10599 PB - Nanoscale AN - OPUS4-50908 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hirsch, A. A1 - Lohmann, S.-H. A1 - Strelow, C. A1 - Kipp, T. A1 - Würth, Christian A1 - Geißler, Daniel A1 - Komoski, A. A1 - Wolter, C. A1 - Weller, H. A1 - Resch-Genger, Ute A1 - Mews, A. T1 - Fluorescence Quantum Yield and Single-Particle Emission of CdSe N2 - The fluorescence quantum yield (QY) of CdSe dot/CdS rod (DR) nanoparticle ensembles is dependent on the Shell growth and excitation wavelength. We analyze the origin of this dependency by comparing the optical properties of DR ensembles to the results obtained in single-particle experiments. On the Ensemble level, we find that the QY of DRs with shell lengths shorter than 40 nm exhibits no dependence on the excitation wavelength, whereas for DRs with shell lengths longer than 50 nm, the QY significantly decreases for excitation above the CdS band gap. Upon excitation in the CdSe core, the ensemble QY, the fluorescence wavelength, and the fluorescence blinking behavior of individual particles are only dependent on the radial CdS shell thickness and not on the CDs shell length. If the photogenerated excitons can reach the CdSe core region, the fluorescence properties will be dependent only on the surface passivation in close vicinity to the CdSe core. The change in QY upon excitation above the band gap of CdS for longer DRs cannot be explained by nonradiative particles because the ratio of emitting DRs is found to be independent of the DR length. We propose a model after which the decrease in QY for longer CdS shells is due to an increasing fraction of nonradiative exciton recombination within the elongated shell. This is supported by an effective-mass-approximation-based calculation, which suggests an optimum length of DRs of about 40 nm, to combine the benefit of high CdS absorption cross section with a high fluorescence QY. KW - Fluorescence KW - Quantum dot KW - Photophysics KW - Single particle spectroscopy KW - Mechanism KW - Theory KW - Ensemble measurements KW - Quantum yield KW - CdSe KW - CdS shell PY - 2019 U6 - https://doi.org/10.1021/acs.jpcc.9b07957 VL - 123 IS - 39 SP - 24338 EP - 24346 PB - ACS Publications AN - OPUS4-49556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kraft, Marco A1 - Würth, Christian A1 - Muhr, V. A1 - Hirsch, T. A1 - Resch-Genger, Ute T1 - Explaining the influence of dopant concentration and excitation power density on the luminescence and brightness of beta-NaYF_4:Yb~(3+),Er~(3+) nanoparticles: Measurements and simulations N2 - A systematic study of the luminescence properties of monodisperse β-NaYF4: 20% Yb3+, 2% Er3+ upconversion nanoparticles (UCNPs) with sizes ranging from 12–43 nm is presented utilizing steady-state and time-resolved fluorometry. Special emphasis was dedicated to the absolute quantification of size- and environment-induced quenching of upconversion luminescence (UCL) by highenergy O–H and C–H vibrations from solvent and ligand molecules at different excitation power densities (P). In this context, the still-debated Population pathways of the 4F9/2 energy level of Er3+ were examined. Our results highlight the potential of particle size and P value for color tuning based on the pronounced near-infrared emission of 12 nm UCNPs, which outweighs the red Er3+ emission under “strongly quenched” conditions and accounts for over 50% of total UCL in water. Because current rate equation models do not include such emissions, the suitability of these models for accurately simulating all (de)population pathways of small UCNPs must be critically assessed. Furthermore, we postulate population pathways for the 4F9/2 energy level of Er3+, which correlate with the size-, environment-, and P-dependent quenching states of the higher Er3+ energy levels. KW - Nanoparticle KW - Nanosensor KW - Fluorescence KW - Upconversion KW - Upconversion nanoparticle KW - NIR KW - Photophysics KW - Lanthanide KW - Size KW - Surface chemistry KW - Quantum yield KW - Mechanism KW - Lifetime KW - Decay kinetics KW - Quenching KW - Diameter KW - Cyclohexane KW - Water PY - 2018 U6 - https://doi.org/10.1007/s12274-018-2159-9 VL - 11/12 SP - 6360 EP - 6374 PB - Springer Nature AN - OPUS4-50307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frenzel, Florian A1 - Würth, Christian A1 - Dukhno, O. A1 - Przybilla, F. A1 - Wiesholler, L. M. A1 - Muhr, V. A1 - Horsch, T. A1 - Mély, Y. A1 - Resch-Genger, Ute T1 - Multiband emission from single β-NaYF4(Yb,Er) nanoparticles at high excitation power densities and comparison to ensemble studies N2 - Ensemble and single particle studies of the excitation power density (P)-dependent upconversion luminescence (UCL) of core and core–shell β-NaYF4:Yb,Er upconversion nanoparticles (UCNPs) doped with 20% Yb3+ and 1% or 3% Er3+ performed over a P regime of 6 orders of magnitude reveal an increasing contribution of the emission from high energy Er3+ levels at P > 1 kW/cm2. This changes the overall emission color from initially green over yellow to white. While initially the green and with increasing P the red emission dominate in ensemble measurements at P < 1 kW/cm2, the increasing population of higher Er3+ energy levels by multiphotonic processes at higher P in single particle studies results in a multitude of emission bands in the ultraviolet/visible/near infrared (UV/vis/NIR) accompanied by a decreased contribution of the red luminescence. Based upon a thorough analysis of the P-dependence of UCL, the emission bands activated at high P were grouped and assigned to 2–3, 3–4, and 4 photonic processes involving energy transfer (ET), excited-state absorption (ESA), cross-relaxation (CR), back energy transfer (BET), and non-radiative relaxation processes (nRP). This underlines the P-tunability of UCNP brightness and color and highlights the potential of P-dependent measurements for mechanistic studies required to manifest the population pathways of the different Er3+ levels. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Llifetime KW - Sensor KW - Excitation power density KW - Single particle KW - Brightness KW - NIR KW - Mechanism KW - Color tuning PY - 2021 U6 - https://doi.org/10.1007/s12274-021-3350-y SN - 1998-0124 VL - 14 IS - 11 SP - 4107 EP - 4115 PB - Nano Research AN - OPUS4-52364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroyuk, O. A1 - Weigert, Florian A1 - Raevskaya, A. A1 - Spranger, F. A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Gaponik, N. A1 - Zahn, D. R. T. T1 - Inherently broadband photoluminescence in Ag−In−S/ZnS quantum dots observed in ensemble and single-particle studies N2 - We present a series of results that demonstrate that the broadband photoluminescence (PL) of aqueous glutathione-capped Ag−In−S (AIS) nanocrystals (NCs) is an inherent property of each NC, rather than a collective characteristic of an NC ensemble. By analyzing parameters affecting the PL features such as the postsynthesis annealing and the deposition of a passivating ZnS shell, we found no correlation between the spectral width of the PL band of AIS (AIS/ZnS) NCs and the density of the lattice defects. Analysis of the PL spectra of a series of size-selected AIS/ZnS NCs revealed that the PL width of fractionated NCs does not depend on the NC size and size distribution. The PL measurements in a broad temperature window from 320 to 10 K demonstrated that the PL width does not decrease with decreasing temperature as expected for an emission arising from thermally activated detrapping processes. Also, we show that the model of the self-trapped exciton can be versatilely applied to reconstruct the PL spectra of different AIS NCs and can account for the effects typically attributed to variations in defect state energy. Measurements of the PL properties of single AIS/ZnS NCs highlighted the broadband nature of the emission of individual NCs. The presented results show that the broadband PL of ternary NCs most probably does not originate from lattice defects but involves the NC lattice as a whole, and, therefore, by tailoring the NC structure, PL efficiencies as high as those reported for binary cadmium or lead chalcogenide NCs can be potentially reached. KW - Nano KW - Nanomaterial KW - Ternary quantum dots KW - AIS KW - Semiconductor nanocrystal KW - Photoluminescence KW - Mechanism KW - Single particle spectroscopy KW - Quantum yield KW - Photophysics PY - 2019 U6 - https://doi.org/10.1021/acs.jpcc.8b11835 SN - 1932-7447 VL - 123 IS - 4 SP - 2632 EP - 2641 PB - ACS AN - OPUS4-47419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kraft, Marco A1 - Würth, Christian A1 - Palo, Emilia A1 - Soukka, Tero A1 - Resch-Genger, Ute T1 - Colour-optimized quantum yields of Yb, Tm Co-doped upconversion nanocrystals N2 - Wepresent here a systematic analysis of the influence of Tm3+ Doping concentrations (xTm) on the excitation power (P)-dependent upconversion luminescence and -performance of hexagonal-Phase NaYF4: 20% Yb3+, xTm%Tm3+ upconversion nanoparticles (UCNPs) for xTm of 0.2, 0.5, 0.8, 1.2, and 2.0, respectively. Our results reveal the influence of these differentTm3+ doping concentrations with respect to optimized upconversion quantum yield (ΦUC) values of the variousTm3+ upconversion emission bands, with the highestΦUC values of theTm3+ emission bands above 700 nmresulting for different xTm values as theTm3+ emission bands below 700 nm. This underlines the potential ofTm3+ dopant concentration for colour tuning. Special emphasis was dedicated to the spectroscopic parameters that can be linked to the (de)population pathways of the variousTm3+ energy levels, like the P- and xTm-dependent slope factors and the intensity ratios of selected emission bands. The evaluation of all parameters indicates that not only energy transfer upconversion-, but also crossrelaxation processes between neighbouringTm3+ ions play a vital role in the (de)population of the excited energy levels of Yb3+, Tm3+ codoped nanocrystals. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Mechanism KW - Quantum yield KW - Photophysics KW - Lifetime PY - 2019 U6 - https://doi.org/10.1088/2050-6120/ab023b SN - 2050-6120 VL - 7 IS - 2 SP - 024001, 1 EP - 6 PB - IOP AN - OPUS4-47420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kaiser, M. A1 - Würth, Christian A1 - Kraft, Marco A1 - Hyppänen, I. A1 - Soukka, T. A1 - Resch-Genger, Ute T1 - Power-dependent upconversion quantum yield of NaYF4:Yb3+,Er3+ nano- and micrometer-sized particles – measurements and simulations N2 - Photophysical studies of nonlinear lanthanide-doped photon upconverting nanoparticles (UCNPs) increasingly used in biophotonics and photovoltaics require absolute measurements of the excitation power density (P)-dependent upconversion luminescence (UCL) and luminescence quantum yields (ΦUC) for quantifying the material performance, UCL deactivation pathways, and possible enhancement factors. We present here the P-dependence of the UCL spectra, ΦUC, and slope factors of the different emission bands of representative 25 nm-sized oleate-capped β-NaYF4:17% Yb3+, 3% Er3+ UCNPs dispersed in toluene and as powder as well as ΦUC of 3 μm-sized upconversion particles (UCμP), all measured with a newly designed integrating sphere setup, enabling controlled variation of P over four orders of magnitude. This includes quantifying the influence of the beam shape on the measured ΦUC and comparison of experimental ΦUC with simulations utilizing the balancing power density model of the Andersson-Engels group and the simulated ΦUC of UCμP from the Berry group, underpinned by closely matching decay kinetics of our UC material. We obtained a maximum ΦUC of 10.5% for UCμP and a ΦUC of 0.6% and 2.1% for solid and dispersed UCNPs, respectively. Our results suggest an overestimation of the contribution of the purple and an underestimation of that of the red emission of β-NaYF4:Yb3+,Er3+: microparticles by the simulations of the Berry group. Moreover, our measurements can be used as a guideline to the absolute determination of UCL and ΦUC KW - Upconversion KW - Photophysics KW - Nanoparticles PY - 2017 U6 - https://doi.org/10.1039/c7nr02449e VL - 9 IS - 28 SP - 10051 EP - 10058 PB - The Royal Society of Chemistry AN - OPUS4-41550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bergstrand, J. A1 - Li, Q. A1 - Huang, B. A1 - Peng, X. A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Zhan, Q. A1 - Widengren, J. A1 - Agren, H. A1 - Liu, H. T1 - On the decay time of upconversion luminescence N2 - In this study, we systematically investigate the decay characteristics of upconversion luminescence (UCL) under anti-Stokes excitation through numerical simulations based on rate-equation models. We find that a UCL decay profile generally involves contributions from the sensitizer’s excited-state lifetime, energy transfer and cross-relaxation processes. It should thus be regarded as the overall temporal response of the whole upconversion system to the excitation function rather than the intrinsic lifetime of the luminescence emitting state. Only under certain conditions, such as when the effective lifetime of the sensitizer’s excited state is significantly shorter than that of the UCL emitting state and of the absence of cross-relaxation processes involving the emitting energy level, the UCL decay time approaches the intrinsic lifetime of the emitting state. Subsequently, Stokes excitation is generally preferred in order to accurately quantify the intrinsic lifetime of the emitting state. However, possible cross-relaxation between doped ions at high doping levels can complicate the decay characteristics of the luminescence and even make the Stokesexcitation approach fail. A strong cross-relaxation process can also account for the power dependence of the decay characteristics of UCL. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Mechanism KW - Quantum yield KW - Photophysics KW - Lifetime KW - Modeling PY - 2019 U6 - https://doi.org/10.1039/c8nr10332a VL - 11 IS - 11 SP - 4959 EP - 4969 PB - RSC Royal Society of Chemistry AN - OPUS4-47888 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Frenzel, Florian A1 - Weigert, Florian A1 - Andresen, Elina A1 - Grauel, Bettina A1 - Wegner, Karl David T1 - Semiconductor (SCNC) & Upconversion Nanocrystals (UCNC) – Optical Properties, Applications & Challenges N2 - Inorganic nanocrystals with linear and nonlinear luminescence in the ultraviolet, visible, near infrared and shortwave infrared like semiconductor quantum dots and spectrally shifting lanthanide-based nanophosphors have meanwhile found applications in the life and material sciences ranging from optical reporters for bioimaging and sensing over security barcodes to solid state lighting and photovoltaics. These nanomaterials commonly have increasingly sophisticated core/shell particle architectures with shells of different chemical composition and thickness to minimize radiationless deactivation at the particle surface that is usually the main energy loss mechanism [1]. For lanthanide-based spectral shifters, particularly for very small nanoparticles, also surface coatings are needed which protect near-surface lanthanide ions from luminescence quenching by high energy vibrators like O-H groups and prevent the disintegration of these nanoparticles under high dilution conditions. [2,3,4]. The identification of optimum particle structures requires quantitative spectroscopic studies focusing on the key performance parameter photoluminescence quantum yield [5,6], ideally flanked by single particle studies to assess spectroscopic inhomogeneities on a particle-to-particle level for typical preparation methods [7], Moreover, in the case of upconversion nanoparticles with a multi-photonic and hence, excitation power density (P)-dependent luminescence, quantitative luminescence studies over a broad P range are required to identify particle architectures that are best suited for applications in fluorescence assays up to fluorescence microscopy. Here, we present methods to quantify the photoluminescence of these different types of emitters in the vis/NIR/SWIR and as function of Pand demonstrate the importance of such measurements for a profound mechanistic understanding of the nonradiative deactivation pathways in semiconductor and upconversion nanocrystals of different size and particle architecture in different environments. T2 - 27th Annual Meeting of the Slovenian Chemical Society CY - Portoroz-Portorose, Slovenia DA - 21.09.2021 KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Surface chemistry KW - Single particle KW - Brightness KW - NIR KW - Synthesis KW - Semiconductur KW - Quantum dot KW - Nanocrystal KW - SWIR PY - 2021 AN - OPUS4-53723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Le Guevel, X. A1 - Wegner, Karl David A1 - Würth, Christian A1 - Baulin, V. A. A1 - Musnier, B. A1 - Josserand, V. A1 - Resch-Genger, Ute A1 - Koll, J-C T1 - Tailoring the SWIR emission of gold nanoclusters by surface ligand rigidification and their application in 3D bioimaging N2 - The influence of solvent polarity and surface ligand rigidification on the SWIR emission profile of gold nanoclusters with an anistropic surface was investigated. A strong enhancement of the SWIR emission band at 1200 nm was observed when measuring in different local environments: in solution, in polymer composites, and in solids. SWIR in vivo imaging of mice assisted by deep learning after intravenous administration of these gold nanoclusters provides high definition pseudo-3D views of vascular blood vessels. KW - Nano KW - Nanomaterial KW - Metal cluster KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - NIR KW - SWIR KW - Ligand KW - Gold KW - Mechanism KW - Charge transfer KW - Enhancement strategy KW - Imaging KW - Application KW - Contrast agent PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-543582 VL - 58 IS - 18 SP - 2967 EP - 2970 PB - RSC AN - OPUS4-54358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -