TY - JOUR A1 - Napp, J. A1 - Behnke, Thomas A1 - Fischer, L. A1 - Würth, Christian A1 - Wottawa, M. A1 - Katschinski, D.M. A1 - Alves, F. A1 - Resch-Genger, Ute A1 - Schäferling, M. T1 - Targeted luminescent near-infrared polymer-nanoprobes for in vivo imaging of tumor hypoxia JF - Analytical chemistry N2 - Polystyrene nanoparticles (PS-NPs) were doped with an oxygen-sensitive near-infrared (NIR)-emissive palladium meso-tetraphenylporphyrin and an inert reference dye which are both excitable at 635 nm. The nanosensors were characterized with special emphasis on fundamental parameters such as absolute photoluminescence quantum yield and fluorescence lifetime. The PS-NPs were employed for ratiometric dual-wavelength and lifetime-based photoluminescent oxygen sensing. They were efficiently taken up by cultured murine alveolar macrophages, yielding a characteristic and reversible change in ratiometric response with decreasing oxygen concentration. This correlated with the cellular hypoxic status verified by analysis of hypoxia inducible factor-1α (HIF-1α) accumulation. In addition, the surface of PS-NPs was functionalized with polyethylene glycol (PEG) and the monoclonal antibody herceptin, and their binding to HER2/neu-overexpressing tumor cells was confirmed in vitro. First experiments with tumor-bearing mouse revealed a distinctive ratiometric response within the tumor upon hypoxic condition induced by animal sacrifice. These results demonstrate the potential of these referenced NIR nanosensors for in vitro and in vivo imaging that present a new generation of optical probes for oncology. KW - Fluorescence KW - NIR KW - Nanoparticles KW - Microparticles KW - Imaging KW - Cancer KW - Oxygene PY - 2011 DO - https://doi.org/10.1021/ac201870b SN - 0003-2700 SN - 1520-6882 VL - 83 IS - 23 SP - 9039 EP - 9046 PB - American Chemical Society CY - Washington, DC AN - OPUS4-24987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Pauli, Jutta A1 - Lochmann, Cornelia A1 - Spieles, Monika A1 - Resch-Genger, Ute T1 - Integrating sphere setup for the traceable measurement of absolute photoluminescence quantum yields in the near infrared JF - Analytical chemistry N2 - There is an increasing interest in chromophores absorbing and emitting in the near-infrared (NIR) spectral region, e.g., for applications as fluorescent reporters for optical imaging techniques and hence, in reliable methods for the characterization of their signal-relevant properties like the fluorescence quantum yield (Φf) and brightness. The lack of well established Φf standards for the NIR region in conjunction with the need for accurate Φf measurements in transparent and scattering media encouraged us to built up an integrating sphere setup for spectrally resolved measurements of absolute fluorescence traceable to radiometric scales. Here, we present the design of this setup and its characterization and validation including an uncertainty budget for the determination of absolute Φf in the visible and NIR. To provide the basis for better measurements of Φf in the spectral window from ca. 600 to 1000 nm used, e.g., for optical imaging, the absolute Φf of a set of NIR chromophores covering this spectral region are measured and compared to relative values obtained using rhodamine 101 as Φf standard. Additionally, the absolute Φf values of some red dyes that are among the most commonly used labels in the life sciences are presented as well as the absolute quantum yield of an optical probe for tumor imaging. KW - Fluorescence KW - Photoluminescence KW - Quantum yield KW - Dye KW - Uncertainty KW - Absolute quantum yield KW - Method comparison KW - Integrating sphere KW - NIR KW - Standards KW - Quantum yield standards PY - 2012 DO - https://doi.org/10.1021/ac2021954 SN - 0003-2700 SN - 1520-6882 VL - 84 IS - 3 SP - 1345 EP - 1352 PB - American Chemical Society CY - Washington, DC AN - OPUS4-25504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ahiboz, D. A1 - Andresen, Elina A1 - Manley, P. A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Becker, C. T1 - Metasurface-Enhanced Photon Upconversion upon 1550 nm Excitation JF - Advanced Science News N2 - Photon upconversion upon 1550 nm excitation is of high relevance for applications in the third biological excitation window, for photovoltaics beyond current limitations, and enables appealing options in the field of glass Fiber telecommunications. Trivalent doped erbium ions (Er3+) are the material of choice for 1550 nm excited upconversion, however, they suffer from a low absorption cross-section and a low brightness. Therefore, the ability of Silicon metasurfaces to provide greatly enhanced electrical near-fields is employed to enable efficient photon upconversion even at low external Illumination conditions. Hexagonally shaped β-NaYF4:Er3+ nanoparticles are placed on large-area silicon metasurfaces designed to convert near-infrared (1550 nm) to visible light. More than 2400-fold enhanced photon upconversion luminescence is achieved by using this metasurface instead of a planar substrate. With the aid of optical simulations based on the finite-element method, this result is attributed to the coupling of the excitation source with metasurface resonances at appropriate incident angles. Analysis of the excitation power density dependence of upconversion luminescence and red-to-green-emission ratios enables the estimation of nanoscale near-field enhancement on the metasurface. The findings permit the significant reduction of required external excitation intensities for photon upconversion of 1550 nm light, opening perspectives in biophotonics, telecommunication, and photovoltaics. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Excitation power density KW - Single particle KW - Brightness KW - NIR KW - Mechanism KW - Single enhancement KW - SWIR KW - Method PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-537193 DO - https://doi.org/10.1002/adom.202101285. SN - 2195-1071 VL - 9 IS - 24 SP - 2101285 PB - Wiley-VCH-GmbH AN - OPUS4-53719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Pauli, Jutta A1 - Weigert, Florian T1 - Quantitative optical-spectroscopic characterization of luminescent nanomaterials - Photoluminescence Quantum Yields N2 - Accurate and quantitative photoluminescence measurements are mandatory for the comparison of different emitter classes and the rational design of the next generation of molecular and nanoscale reporters as well as for most applications relying on their luminescence features in the life and material sciences and nanobiophotonics. In the following, procedures for the determination of the spectroscopic key parameter photoluminescence quantum yield, i.e., the number of emitted per absorbed photons, in the UV/vis/NIR/SWIR are presented including pitfalls and achievable uncertainties and material-specific effects related to certain emitter classes are addressed. Special emphasis is dedicated to luminescent nanocrystals. T2 - International Workshop on "Emerging Nanomaterials for Displays and SSL" CY - Dresden, Germany DA - 11.11.2021 KW - Nano KW - Nanomaterial KW - Nanocrystal KW - Semiconductor quantum dot KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Surface chemistry KW - Brightness KW - NIR KW - SWIR KW - Method KW - Uncertainty KW - Rreference material PY - 2021 AN - OPUS4-53783 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahiboz, D. A1 - Andresen, Elina A1 - Manley, P. A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Becker, C. T1 - Enhanced photon upconversion using erbium-doped nanoparticles interacting with silicon metasurfaces T2 - Proceeding 48th Photovoltaic Specialists Conference (PVSC) N2 - Photon upconversion (UC) using trivalent erbium (Er+3) doped crystals is a promising concept to harness near infrared photons of the solar spectrum which cannot be directly absorbed by silicon solar cells. However, their UC efficiency at low-intensity 1 sun illumination is not relevant on device level so far. Exploiting giant near-field enhancement effects on metasurfaces is an appealing approach to enable efficient UC at low irradiance conditions. Here, we report on more than 1000-fold enhanced photon UC of NaYF4:Er+3 nanoparticles interacting with the near-fields supported by a silicon metasurface under 1550 nm excitation. T2 - 48th Photovoltaic Specialists Conference (PVSC) CY - Online meeting DA - 20.06.2021 KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Excitation power density KW - Brightness KW - NIR KW - Mechanism KW - Modeling KW - Simulation KW - Energy transfer KW - Photonic crystal KW - Enhancement strategy PY - 2021 DO - https://doi.org/10.1109/pvsc43889.2021.9518495 SP - 1 EP - 3 PB - IEEE CY - Berlin AN - OPUS4-53786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pauli, Jutta A1 - Würth, Christian A1 - Güttler, Arne A1 - Resch-Genger, Ute T1 - Reliable Determination of the Signal-Relevant Spectroscopic Key Characteristics of Luminescent Reporters and Optical Probes for Imaging in the vis/NIR/SWIR N2 - Introduction. Comparing different emitter classes and rationally designing the next generation of molecular and nanoscale probes for bioimaging applications require accurate and quantitative methods for the measurement of the key parameter photoluminescence quantum yield f.1 f equals the number of emitted per number of absorbed photons. This is particularly relevant for increasingly used fluorescence imaging in the short wave-infrared region (SWIR) ≥ 900 nm providing deeper penetration depths, a better image resolution, and an improved signal-to-noise or tumor-to-background ratio.2, 3 However, spectroscopic measurements in the SWIR are more challenging and require specific calibrations and standards. T2 - EMIM 2021 CY - Göttingen, Germany DA - 24.08.2021 KW - Fluorescence KW - Optical probe KW - Dye KW - Photophysics KW - Quantum yield KW - Mechanism KW - NIR KW - SWIR KW - Imaging KW - Reference material KW - Reliability KW - Nano KW - Particle KW - Method KW - Quality assurance PY - 2021 AN - OPUS4-53233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, K. A1 - Liu, H. A1 - Kraft, Marco A1 - Shikha, S. A1 - Zheng, X. A1 - Agren, H. A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Zhang, Y. T1 - A protected excitation-energy reservoir for efficient upconversion luminescence JF - Nanoscale N2 - Lanthanide-doped upconversion nanoparticles (UCNPs) are of great interest for biomedical applications. Currently, the applicability of UCNP bionanotechnology is hampered by the generally low luminescence intensity of UCNPs and inefficient energy Transfer from UCNPs to surface-bound chromophores used e.g. for photodynamic therapy or analyte sensing. In this work, we address the low-Efficiency issue by developing versatile core-Shell nanostructures, where high-concentration sensitizers and activators are confined in the core and Shell Region of representative hexagonal NaYF2:Yb,Er UCNPs. After Doping concentration optimization, the sensitizer-rich core is able to harvest/accumulate more excitation energy and generate almost one order of Magnitude higher luminescence intesity than conventional homogeneously doped nanostructures. At the same time, the activator Ions located in the Shell enable a ~6 times more efficient resonant energy Transfer from UCNPs to surface-bound acceptor dye molecules due to the short distance between donor-acceptor pairs. Our work provides new insights into the rational design of UCNPs and will greatly encrease the General applicability of upconversion nanotechnologies. KW - Fluorescence KW - Lanthanide KW - Upconversion KW - Brightness KW - Quantification KW - Nanoparticle KW - Absolute fluorometry KW - NIR KW - IR KW - Quantum yield KW - Integrating sphere spectroscopy KW - Method KW - Energy transfer KW - Shell KW - Particle architecture PY - 2017 DO - https://doi.org/10.1039/c7nr06900f SN - 2040-3372 SN - 2040-3364 VL - 10 IS - 1 SP - 250 EP - 259 PB - The Royal Society of Chemistry AN - OPUS4-43893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiesholler, L. M. A1 - Frenzel, Florian A1 - Grauel, Bettina A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Hirsch, T. ED - Resch-Genger, Ute ED - Hirsch, Thomas T1 - Yb,Nd,Er-doped upconversion nanoparticles: 980 nm versus 808 nm excitation JF - Nanoscale N2 - Yb,Nd,Er-doped upconversion nanoparticles (UCNPs) have attracted considerable interest as luminescent reporters for bioimaging, sensing, energy conversion/shaping, and anticounterfeiting due to their capability to convert multiple near-infrared (NIR) photons into shorter wavelength ultraviolet, visible or NIR luminescence by successive absorption of two or more NIR photons. This enables optical measurements in complex media with very little background and high penetration depths for bioimaging. The use of Nd3+ as substitute for the commonly employed sensitizer Yb3+ or in combination with Yb3+ shifts the excitation wavelength from about 980 nm, where the absorption of water can weaken upconversion luminescence, to about 800 nm, and laser-induced local overheating effects in cells, tissue, and live animal studies can be minimized. To systematically investigate the potential of Nd3+ doping, we assessed the performance of a set of similarly sized Yb3+,Nd3+,Er3+-doped core- and core–shell UCNPs of different particle architecture in water at broadly varied excitation power densities (P) with steady state and time-resolved fluorometry for excitation at 980 nm and 808 nm. As a measure for UCNPs performance, the P-dependent upconversion quantum yield (Φ) and its saturation behavior were used as well as particle brightness (B). Based upon spectroscopic measurements at both excitation wavelengths in water and in a lipid phantom and B-based calculations of signal size at different penetration depths, conditions under which excitation at 808 nm is advantageous are derived and parameters for the further optimization of triple-doped UCNPs are given. KW - Lanthanide KW - Upconversion KW - Nanoparticle KW - Photoluminescence KW - Quantum yield KW - Lifetime KW - Brightness KW - Nd excitation KW - Excitation power density KW - Modelling KW - NIR PY - 2019 DO - https://doi.org/10.1039/C9NR03127H SN - 2040-3372 SN - 2040-3364 VL - 11 IS - 28 SP - 13440 EP - 13449 PB - Royal Society of Chemistry CY - London AN - OPUS4-48608 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Carl, F. A1 - Grauel, Bettina A1 - Pons, Monica A1 - Würth, Christian A1 - Haase, M. T1 - LiYF4:Yb/LiYF4 and LiYF4:Yb,Er/LiYF4 core/shell nanocrystals with luminescence decay times similar to YLF laser crystals and the upconversion quantum yield of the Yb,Er doped nanocrystals JF - Tsinghua University Press N2 - We developed a procedure to prepare luminescent LiYF4:Yb/LiYF4 and LiYF4:Yb,Er/LiYF4 core/shell nanocrystals with a size of approximately 40 nm revealing luminescence decay times of the dopant ions that approach those of high-quality laser crystals of LiYF4:Yb (Yb:YLF) and LiYF4:Yb,Er (Yb,Er:YLF) with identical doping concentrations. As the luminescence decay times of Yb3+ and Er3+ are known to be very sensitive to the presence of quenchers, the long decay times of the core/shell nanocrystals indicate a very low number of defects in the core particles and at the core/shell interfaces. This improvement in the performance was achieved by introducing two important modifications in the commonly used oleic acid based synthesis. First, the shell was prepared via anewly developed method characterized by a very low nucleation rate for particles of pure LiYF4 shell material. Second, anhydrous acetates were used as precursors and additional drying steps were applied to reduce the incorporation of OH− in the crystal lattice, known to quench the emission of Yb3+ ions. Excitation power density (P)-dependent absolute measurements of the upconversion luminescence quantum yield (Φ,UC) of LiYF4:Yb,Er/LiYF4 core/shell particles reveal a maximum value of 1.25% at P of 180 W·cm−2. Although lower than the values reported for NaYF4:18%Yb,2%Er core/shell nanocrystals with comparable sizes, these Φ, UC values are the highest reported so far for LiYF4:18%Yb,2%Er/LiYF4 nanocrystals without additional dopants. Further improvements May nevertheless be possible by optimizing the dopant concentrations in the LiYF4 nanocrystals. KW - Nano KW - Crystal KW - Quantum yield KW - LiYF4 KW - Synthesis KW - Lifetime KW - Fluorescence KW - NIR KW - Photoluminescence KW - Lanthanide KW - Upconversion nanoparticle KW - Nanomaterial PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515395 DO - https://doi.org/10.1007/s12274-020-3116-y SN - 1998-0124 VL - 14 IS - 3 SP - 797 EP - 806 PB - Springer AN - OPUS4-51539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kraft, Marco A1 - Würth, Christian A1 - Muhr, V. A1 - Hirsch, T. A1 - Resch-Genger, Ute T1 - Explaining the influence of dopant concentration and excitation power density on the luminescence and brightness of beta-NaYF_4:Yb~(3+),Er~(3+) nanoparticles: Measurements and simulations JF - Nano Research 2018 N2 - A systematic study of the luminescence properties of monodisperse β-NaYF4: 20% Yb3+, 2% Er3+ upconversion nanoparticles (UCNPs) with sizes ranging from 12–43 nm is presented utilizing steady-state and time-resolved fluorometry. Special emphasis was dedicated to the absolute quantification of size- and environment-induced quenching of upconversion luminescence (UCL) by highenergy O–H and C–H vibrations from solvent and ligand molecules at different excitation power densities (P). In this context, the still-debated Population pathways of the 4F9/2 energy level of Er3+ were examined. Our results highlight the potential of particle size and P value for color tuning based on the pronounced near-infrared emission of 12 nm UCNPs, which outweighs the red Er3+ emission under “strongly quenched” conditions and accounts for over 50% of total UCL in water. Because current rate equation models do not include such emissions, the suitability of these models for accurately simulating all (de)population pathways of small UCNPs must be critically assessed. Furthermore, we postulate population pathways for the 4F9/2 energy level of Er3+, which correlate with the size-, environment-, and P-dependent quenching states of the higher Er3+ energy levels. KW - Nanoparticle KW - Nanosensor KW - Fluorescence KW - Upconversion KW - Upconversion nanoparticle KW - NIR KW - Photophysics KW - Lanthanide KW - Size KW - Surface chemistry KW - Quantum yield KW - Mechanism KW - Lifetime KW - Decay kinetics KW - Quenching KW - Diameter KW - Cyclohexane KW - Water PY - 2018 DO - https://doi.org/10.1007/s12274-018-2159-9 VL - 11/12 SP - 6360 EP - 6374 PB - Springer Nature AN - OPUS4-50307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Frenzel, Florian A1 - Würth, Christian A1 - Dukhno, O. A1 - Przybilla, F. A1 - Wiesholler, L. M. A1 - Muhr, V. A1 - Horsch, T. A1 - Mély, Y. A1 - Resch-Genger, Ute T1 - Multiband emission from single β-NaYF4(Yb,Er) nanoparticles at high excitation power densities and comparison to ensemble studies JF - Springer N2 - Ensemble and single particle studies of the excitation power density (P)-dependent upconversion luminescence (UCL) of core and core–shell β-NaYF4:Yb,Er upconversion nanoparticles (UCNPs) doped with 20% Yb3+ and 1% or 3% Er3+ performed over a P regime of 6 orders of magnitude reveal an increasing contribution of the emission from high energy Er3+ levels at P > 1 kW/cm2. This changes the overall emission color from initially green over yellow to white. While initially the green and with increasing P the red emission dominate in ensemble measurements at P < 1 kW/cm2, the increasing population of higher Er3+ energy levels by multiphotonic processes at higher P in single particle studies results in a multitude of emission bands in the ultraviolet/visible/near infrared (UV/vis/NIR) accompanied by a decreased contribution of the red luminescence. Based upon a thorough analysis of the P-dependence of UCL, the emission bands activated at high P were grouped and assigned to 2–3, 3–4, and 4 photonic processes involving energy transfer (ET), excited-state absorption (ESA), cross-relaxation (CR), back energy transfer (BET), and non-radiative relaxation processes (nRP). This underlines the P-tunability of UCNP brightness and color and highlights the potential of P-dependent measurements for mechanistic studies required to manifest the population pathways of the different Er3+ levels. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Llifetime KW - Sensor KW - Excitation power density KW - Single particle KW - Brightness KW - NIR KW - Mechanism KW - Color tuning PY - 2021 DO - https://doi.org/10.1007/s12274-021-3350-y SN - 1998-0124 VL - 14 IS - 11 SP - 4107 EP - 4115 PB - Nano Research AN - OPUS4-52364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Pilch, A. A1 - Würth, Christian A1 - Kaiser, Martin A1 - Wawrzynczyk, D. A1 - Kurnatowska, M. A1 - Arabasz, S. A1 - Prorok, K. A1 - Samoc, M. A1 - Strek, W. A1 - Bednarkiewicz, A. T1 - Shaping luminescent properties of Yb3+ and Ho3+ co-doped upconverting core-shell ß-NaYF4 nanoparticles by dopant distribution and spacing JF - Small N2 - At the core of luminescence color and lifetime Tuning of rare earth doped upconverting nanoparticles (UCNPs), is the understanding of the Impact of the particle architecture for commonly used sensitizer (S) and activator (A) Ions. In this respect, a series of core@Shell NaYF4 UCNPs doped with Yb3+ and Ho3+ ions are presented here, where the same dopant concentrations are distributed in different particle architectures following the scheme: YbHo core and YbHo@..., ...@YbHo, Yb@Ho, Ho@Yb, YbHo@Yb, and Yb@YbHo core-Shell NPs. As refealed by quantitative steady-state and time-resolved luminescence studies, the relative spatial Distribution of the A and S ions in the UCNPs and their protection from surface quenching has a critical Impact on ther luminescence characteristics. Although the increased amount of Yb3+ Ions boosts UCNP Performance by amplifying the Absorption, the Yb3+ ions can also efficiently dissipate the energy stored in the material through energy Migration to the surface, thereby reducing the Overall energy Transfer Efficiency to the activator ions. The results provide yet another proof that UC Phosphor chemistry combined with materials Engineering through intentional core@shell structures may help to fine-tune the luminescence Features of UCNPs for their specific future applications in biosensing, bioimaging, photovoltaics, and Display technologies. KW - Fluorescence KW - Upconversion KW - NIR KW - Nonlinear KW - Nanoparticle KW - Surface chemistry KW - Quantum yield KW - Liftetime KW - Nanocrystal KW - Lanthanide KW - Ho(III) KW - Yb(III) KW - Mechanism KW - Absolute flourescence KW - Excitation power density dependence PY - 2017 DO - https://doi.org/10.1002/smll.201701635 SN - 1613-6810 VL - 13 IS - 47 SP - 1701635, 1 EP - 13 PB - WILEY-VCH Verlag GmbH & co. KGaA CY - Weinheim AN - OPUS4-43629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Würth, Christian A1 - Kaiser, Martin A1 - Resch-Genger, Ute T1 - New Trends in Fluorometry - Fluorescence Measurements above 1000 nm N2 - Trends in fluorometry and fluorescence imaging are increasing applications of molecular and nanoscale reporters with emission > 800 nm and recently also > 1000 nm for bioanalysis, medical diagnostics, bioimaging, and safety barcodes. Mandatory for the comparison of different emitter classes and the rational design of the next generation of reporters for the short wavelength infrared (SWIR) region are reliable and quantitative photoluminescence measurements in this challenging wavelength region. This is of special relevance for nanocrystalline emitters like semiconductor quantum dots and rods as well as lanthanide-based upconversion and downconversion nanocrystals, where surface states and the accessibility of emissive states by quenchers largely control accomplishable photoluminescence quantum yields and hence, signal sizes and detection sensitivities from the reporter side. Such measurements are currently hampered by the lack of suitable methods and standards for instrument calibration and validation and quantum yield standards with emission > 800 nm and especially > 1000 nm. In this respect, we present the design of integrating sphere setups for absolute and excitation power density-dependent measurements of emission spectra and photoluminescence quantum yields in the wavelength region of 650 to 1650 nm including calibration strategies and first candidates for potential fluorescence standards. Subsequently, selected examples for spectroscopic studies of different types of nanocrystals are presented including the upconversion and downconversion emission of differently sized and surface functionalized lanthanide-doped nanoparticles T2 - COSP-Colloquium Optical Spectroscopy CY - Berlin, Germany DA - 27.11.2017 KW - Yield KW - IR fluorescence KW - Quantum dot KW - Upconversion nanocrystal KW - Lanthanide emitter KW - NIR KW - Integrating sphere spectroscopy KW - Absolute fluorescence quantum PY - 2017 AN - OPUS4-43327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauli, Jutta A1 - Hoffmann, Katrin A1 - Würth, Christian A1 - Behnke, Thomas A1 - Resch-Genger, Ute T1 - Standardization of fluorescence measurements in the UV/vis/NIR/IR JF - Standardization of Fluorescence Measurements in the UV/vis/NIR/IR N2 - Photoluminescence techniques are amongst the most widely used Tools in the life sciences, with new and exciting applications in medical diagnostics and molecular Imaging continuously emerging. Advantages include their comparative ease of use, unique sensitivity, non-invasive character, and potential for Multiplexing, remote sensing, and miniaturization. General drawbacks are, however, signals, that contain unwanted wavelength- and polarization contributions from Instrument-dependent effects, which are also time-dependent due to aging of Instrument-components, and difficulties to measure absolute flourescence entensities. Moreover, scattering Systems require Special measurement geometries and the interest in new optical Reporters with Emission > 1000 nm strategies for reliable measurements in the second diagnostic for the comparison of material Performance and the rational designg of new flourophores with improved properties. Here, we present strategies to versatile method-adaptable liquid and solid flourescence Standards for different flourescence paramters including traceable Instrument calibration procedures and the design of integrating spere setups for the absolute measurements of emission spectra and Quantum yields in the wavelength Region of 350 to 1600 nm. Examples are multi-Emitter glasses, spectral flourescence Standards, and quantum yield Standards for the UV/vis/NIR. T2 - Conference on Molecular-Guided Surgery - Molecules, Devices, and Applications III CY - San Francisco, CA, USA DA - 28.01.2017 KW - Fluorescence KW - Reference material KW - Standard KW - Calibration KW - Nanoparticle KW - Absolute flourometry KW - Integrating sphere spectroscopy KW - NIR KW - IR KW - Quantum yield standard KW - Emission standards PY - 2017 SN - 978-1-5106-0539-8 DO - https://doi.org/10.1117/12.2255728 SN - 0277-786X VL - 10049 SP - 1 PB - Proceedings of SPIE AN - OPUS4-41783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tietze, R. A1 - Panzer, R. A1 - Starzynski, T. A1 - Guhrenz, C. A1 - Frenzel, Florian A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Weigand, Jan J. A1 - Eychmüller, A. T1 - Synthesis of NIR-emitting InAs-based core/shell quantum dots with the use of tripyrazolylarsane as arsenic precursor JF - Particle & Particle Systems Characterization N2 - Tris(3,5-dimethylpyrazolyl)arsane (1) is introduced as a low-cost and convenient to handle arsenic precursor for the straight Forward synthesis of InAs Quantum dots (QDs). Transamination of 1 with the solvent oleylamine (OLAH) gives trioleylarsane (As(OLA)3) which in the presence of the reducing agents diisobutylaluminum hydride (DIBAL-H) or trioleylphosphane (P(OLA)3) yields InAs QDs via a typical hot injection approach. The size of the obtained InAs core QDs are tuned by varying the reaction time, the amount of the applied reducing agent, or even more effectively by changing the Indium and/or zinc halide precursors, InX3, and ZnX2 (Cl, Br, or I). Passivation of the resulting InAs particles with a protective ZnS or ZnSe shell results in improved photoluminescence of the core/shell QDs covering a spectral range between 600 and 1150 nm. KW - Quantum dot KW - NIR KW - Near infrared PY - 2018 DO - https://doi.org/10.1002/ppsc.201800175 SN - 0934-0866 SN - 1521-4117 VL - 35 IS - 9 SP - 1800175, 1 EP - 7 PB - Wiley AN - OPUS4-46076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grauel, Bettina A1 - Würth, Christian A1 - Homann, C. A1 - Krukewitt, Lisa A1 - Andresen, Elina A1 - Roik, Janina A1 - Recknagel, Sebastian A1 - Haase, M. A1 - Resch-Genger, Ute T1 - Volume and surface effects on two-photonic and three-photonic processes in dry co-doped upconversion nanocrystals JF - NanoResearch N2 - Despite considerable advances in synthesizing high-quality core/shell upconversion (UC) nanocrystals (NC; UCNC) and UCNC photophysics, the application of near-infrared (NIR)-excitable lanthanide-doped UCNC in the life and material sciences is still hampered by the relatively low upconversion luminescence (UCL) of UCNC of small size or thin protecting shell. To obtain deeper insights into energy transfer and surface quenching processes involving Yb3+ and Er3+ ions, we examined energy loss processes in differently sized solid core NaYF4 nanocrystals doped with either Yb3+ (YbNC; 20% Yb3+) or Er3+ (ErNC; 2% Er3+) and co-doped with Yb3+ and Er3+ (YbErNC; 20% Yb3+ and 2% Er3+) without a surface protection shell and coated with a thin and a thick NaYF4 shell in comparison to single and co-doped bulk materials. Luminescence studies at 375 nm excitation demonstrate backenergy transfer (BET) from the 4G11/2 state of Er3+ to the 2F5/2 state of Yb3+, through which the red Er3+ 4F9/2 state is efficiently populated. Excitation power density (P)-dependent steady state and time-resolved photoluminescence measurements at different excitation and emission wavelengths enable to separate surface-related and volume-related effects for two-photonic and threephotonic processes involved in UCL and indicate a different influence of surface passivation on the green and red Er3+ emission. The intensity and lifetime of the latter respond particularly to an increase in volume of the active UCNC core. We provide a threedimensional random walk model to describe these effects that can be used in the future to predict the UCL behavior of UCNC. KW - Nano KW - Nanomaterial KW - Upconversion KW - Nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Pphotophysics KW - Lifetime KW - Sensor KW - Excitation KW - Power density KW - Single particle KW - Brightness KW - NIR KW - Mechanism KW - Modeling KW - Simulation KW - Energy transfer PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-535317 DO - https://doi.org/10.1007/s12274-021-3727-y SN - 1998-0124 VL - 15 IS - 3 SP - 2362 EP - 2373 PB - Springer AN - OPUS4-53531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Pauli, J. A1 - Güttler, Arne A1 - Richter, Maria A1 - Fiedler, Saskia A1 - Frenzel, Florian A1 - Wegner, Karl David A1 - Würth, Christian T1 - Photoluminescence Quantum Yields of Luminescent Nanocrystals and Particles in the UV/vis/NIR/SWIR N2 - The rational design of functional luminescent materials such as semiconductor quantum dots and lanthanide-based upconversion nanoparticles, all photophysical and mechanistic studies, and the comparison of different emitters require accurate and quantitative photoluminescence measurements. Particularly the reliable determination of the key performance parameter photoluminescence quantum yield (f), the number of emitted per absorbed photons, and the brightness are of special importance for luminescence applications in the life and material sciences and nano(bio)photonics.[1] In this context, examples for absolute measurements of the photoluminescence quantum yields of UV/vis/NIR/SWIR emissive semiconductor quantum dots and rods, made from different materials, and spectrally shifting lanthanide upconversion nanocrystals with different surface chemistries in transparent matrices are presented including excitation wavelength and power density dependent studies utilizing integration sphere spectroscopy.[2,3] In addition, procedures for the absolute determination of the photoluminescence quantum yields of scattering dispersions of larger size quantum rods and differently sized inorganic particles have been developed as well as procedures for the characterization of solid luminescent nanomaterials such as different perovskites and YAG:Cer converter materials.[4] Thereby, challenges and pitfalls of f measurements in different wavelength regions including the SWIR and material-specific effects related to certain emitter classes are addressed, achievable uncertainties are quantified, and relative and absolute measurements of photoluminescence quantum yield measurements are compared to underline limitations of the former approach. Finally, a set of novel UV/vis/NIR quantum yield standards is presented including their certification with a complete uncertainty budget.[5] T2 - NANAX 10 CY - Klosterneuburg, Austria DA - 03.07.2023 KW - Fluorescence KW - Optical spectroscopy KW - Reference data KW - Traceability KW - NIR KW - Scattering KW - Reference material KW - Certification KW - Quality assurance KW - Dye KW - Reference product KW - SWIR KW - Nano KW - Particle KW - Perovskite KW - Integrating sphere spectroscopy KW - Quantum yield PY - 2023 AN - OPUS4-58238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Resch-Genger, Ute A1 - Würth, Christian A1 - Frenzel, Florian A1 - Weigert, Florian A1 - Andresen, Elina A1 - Grauel, Bettina A1 - Wegner, Karl David T1 - Semiconductor (SCNC) & Upconversion Nanocrystals (UCNC) – Optical Properties, Applications & Challenges N2 - Inorganic nanocrystals with linear and nonlinear luminescence in the ultraviolet, visible, near infrared and shortwave infrared like semiconductor quantum dots and spectrally shifting lanthanide-based nanophosphors have meanwhile found applications in the life and material sciences ranging from optical reporters for bioimaging and sensing over security barcodes to solid state lighting and photovoltaics. These nanomaterials commonly have increasingly sophisticated core/shell particle architectures with shells of different chemical composition and thickness to minimize radiationless deactivation at the particle surface that is usually the main energy loss mechanism [1]. For lanthanide-based spectral shifters, particularly for very small nanoparticles, also surface coatings are needed which protect near-surface lanthanide ions from luminescence quenching by high energy vibrators like O-H groups and prevent the disintegration of these nanoparticles under high dilution conditions. [2,3,4]. The identification of optimum particle structures requires quantitative spectroscopic studies focusing on the key performance parameter photoluminescence quantum yield [5,6], ideally flanked by single particle studies to assess spectroscopic inhomogeneities on a particle-to-particle level for typical preparation methods [7], Moreover, in the case of upconversion nanoparticles with a multi-photonic and hence, excitation power density (P)-dependent luminescence, quantitative luminescence studies over a broad P range are required to identify particle architectures that are best suited for applications in fluorescence assays up to fluorescence microscopy. Here, we present methods to quantify the photoluminescence of these different types of emitters in the vis/NIR/SWIR and as function of Pand demonstrate the importance of such measurements for a profound mechanistic understanding of the nonradiative deactivation pathways in semiconductor and upconversion nanocrystals of different size and particle architecture in different environments. T2 - 27th Annual Meeting of the Slovenian Chemical Society CY - Portoroz-Portorose, Slovenia DA - 21.09.2021 KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Surface chemistry KW - Single particle KW - Brightness KW - NIR KW - Synthesis KW - Semiconductur KW - Quantum dot KW - Nanocrystal KW - SWIR PY - 2021 AN - OPUS4-53723 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Le Guevel, X. A1 - Wegner, Karl David A1 - Würth, Christian A1 - Baulin, V. A. A1 - Musnier, B. A1 - Josserand, V. A1 - Resch-Genger, Ute A1 - Koll, J-C T1 - Tailoring the SWIR emission of gold nanoclusters by surface ligand rigidification and their application in 3D bioimaging JF - Chemical Communications N2 - The influence of solvent polarity and surface ligand rigidification on the SWIR emission profile of gold nanoclusters with an anistropic surface was investigated. A strong enhancement of the SWIR emission band at 1200 nm was observed when measuring in different local environments: in solution, in polymer composites, and in solids. SWIR in vivo imaging of mice assisted by deep learning after intravenous administration of these gold nanoclusters provides high definition pseudo-3D views of vascular blood vessels. KW - Nano KW - Nanomaterial KW - Metal cluster KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - NIR KW - SWIR KW - Ligand KW - Gold KW - Mechanism KW - Charge transfer KW - Enhancement strategy KW - Imaging KW - Application KW - Contrast agent PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543582 DO - https://doi.org/10.1039/D1CC06737K VL - 58 IS - 18 SP - 2967 EP - 2970 PB - RSC AN - OPUS4-54358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -