TY - JOUR A1 - Hatami, Soheil A1 - Würth, Christian A1 - Kaiser, Martin A1 - Leubner, S. A1 - Gabriel, S. A1 - Bahrig, L. A1 - Lesnyak, V. A1 - Pauli, Jutta A1 - Gaponik, N. A1 - Eychmüller, A. A1 - Resch-Genger, Ute T1 - Absolute photoluminescence quantum yields of IR26 and IR-emissive Cd1-xHgxTe and PbS quantum dots - method- and material-inherent challenges JF - Nanoscale N2 - Bright emitters with photoluminescence in the spectral region of 800–1600 nm are increasingly important as optical reporters for molecular imaging, sensing, and telecommunication and as active components in electrooptical and photovoltaic devices. Their rational design is directly linked to suitable methods for the characterization of their signal-relevant properties, especially their photoluminescence quantum yield (Φf). Aiming at the development of bright semiconductor nanocrystals with emission >1000 nm, we designed a new NIR/IR integrating sphere setup for the wavelength region of 600–1600 nm. We assessed the performance of this setup by acquiring the corrected emission spectra and Φf of the organic dyes Itrybe, IR140, and IR26 and several infrared (IR)-emissive Cd1-xHgxTe and PbS semiconductor nanocrystals and comparing them to data obtained with two independently calibrated fluorescence instruments absolutely or relative to previously evaluated reference dyes. Our results highlight special challenges of photoluminescence studies in the IR ranging from solvent absorption to the lack of spectral and intensity standards together with quantum dot-specific challenges like photobrightening and photodarkening and the size-dependent air stability and photostability of differently sized oleate-capped PbS colloids. These effects can be representative of lead chalcogenides. Moreover, we redetermined the Φf of IR26, the most frequently used IR reference dye, to 1.1 × 10-3 in 1,2-dichloroethane DCE with a thorough sample reabsorption and solvent absorption correction. Our results indicate the need for a critical reevaluation of Φf values of IR-emissive nanomaterials and offer guidelines for improved Φf measurements. PY - 2015 DO - https://doi.org/10.1039/c4nr04608k SN - 2040-3364 SN - 2040-3372 VL - 7 IS - 1 SP - 133 EP - 143 PB - RSC Publ. CY - Cambridge AN - OPUS4-32408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stroyuk, O. A1 - Weigert, Florian A1 - Raevskaya, A. A1 - Spranger, F. A1 - Würth, Christian A1 - Resch-Genger, Ute A1 - Gaponik, N. A1 - Zahn, D. R. T. T1 - Inherently broadband photoluminescence in Ag−In−S/ZnS quantum dots observed in ensemble and single-particle studies JF - JOURNAL OF PHYSICAL CHEMISTRY C N2 - We present a series of results that demonstrate that the broadband photoluminescence (PL) of aqueous glutathione-capped Ag−In−S (AIS) nanocrystals (NCs) is an inherent property of each NC, rather than a collective characteristic of an NC ensemble. By analyzing parameters affecting the PL features such as the postsynthesis annealing and the deposition of a passivating ZnS shell, we found no correlation between the spectral width of the PL band of AIS (AIS/ZnS) NCs and the density of the lattice defects. Analysis of the PL spectra of a series of size-selected AIS/ZnS NCs revealed that the PL width of fractionated NCs does not depend on the NC size and size distribution. The PL measurements in a broad temperature window from 320 to 10 K demonstrated that the PL width does not decrease with decreasing temperature as expected for an emission arising from thermally activated detrapping processes. Also, we show that the model of the self-trapped exciton can be versatilely applied to reconstruct the PL spectra of different AIS NCs and can account for the effects typically attributed to variations in defect state energy. Measurements of the PL properties of single AIS/ZnS NCs highlighted the broadband nature of the emission of individual NCs. The presented results show that the broadband PL of ternary NCs most probably does not originate from lattice defects but involves the NC lattice as a whole, and, therefore, by tailoring the NC structure, PL efficiencies as high as those reported for binary cadmium or lead chalcogenide NCs can be potentially reached. KW - Nano KW - Nanomaterial KW - Ternary quantum dots KW - AIS KW - Semiconductor nanocrystal KW - Photoluminescence KW - Mechanism KW - Single particle spectroscopy KW - Quantum yield KW - Photophysics PY - 2019 DO - https://doi.org/10.1021/acs.jpcc.8b11835 SN - 1932-7447 VL - 123 IS - 4 SP - 2632 EP - 2641 PB - ACS AN - OPUS4-47419 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -