TY - CONF A1 - Eisenacher, Germar A1 - Kuschke, Christian A1 - Schubert, Sven A1 - Neumann, Martin A1 - Sterthaus, Jens A1 - Nitz, Thilo A1 - Wille, Frank T1 - Moisture content of wood - influence on mechanical behavior of wood filled impact limiter and importance for quality surveillance during manufacturing N2 - The moisture content of wood is known to have a significant influence on the wood’s mechanical properties. Using wood as an energy absorber in impact limiter of packages for the transport of radioactive material, it is of particu-lar importance to ensure the moisture content and thus relevant mechanical properties to be in specified limits. The paper surveys the influence of wood moisture content on the mechanical properties of wood. Different measuring methods are discussed with respect to in-situ applicability, accuracy and effort. The results of an experimental ana-lysis of the accuracy of hand-held moisture meters using the electrical resistance method are discussed. Conclu-sions are drawn regarding the measurement of moisture content of wood upon delivery as well as of complete im-pact limiter assemblies. Requirements for quality surveillance during manufacturing of wood filled impact limiter are derived and it is exemplified how to meet them. Construction, manufacturing and inspection of impact limiter encapsulation with regard to leak-tightness are addressed. T2 - RAMTRANSPORT 2012 - 9th International Conference on the Radioactive Materials Transport and Storage CY - London, UK DA - 2012-05-22 KW - Mechanical behavior of wood KW - Moisture content KW - Impact limiter PY - 2012 IS - 4.4 RAM 30 SP - 1 EP - 11 AN - OPUS4-26241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bettge, Dirk A1 - Klinger, Christian A1 - Ell, Matthias A1 - Klingbeil, Dietmar A1 - von Oppel, Kay A1 - Singh, Kai A1 - Eberle, Arno A1 - Engelhardt, Monika A1 - Bogel, Bärbel A1 - Saliwan Neumann, Romeo T1 - Schadensanalyse an Rohrbögen von Dampferzeugeranlagen T2 - VGB-Fachtagung "Dampferzeuger, Industrie und Heizkraftwerke 2006" CY - Würzburg, Deutschland DA - 2006-09-04 KW - Schadensanalyse KW - Brüche KW - Dampferzeuger KW - Transportschaden PY - 2006 PB - VGB PowerTech e.V. CY - Essen AN - OPUS4-12817 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eisenacher, Germar A1 - Kuschke, Christian A1 - Schubert, Sven A1 - Neumann, Martin A1 - Sterthaus, Jens A1 - Nitz, Thilo A1 - Wille, Frank T1 - Moisture content of wood: influence on mechanical behaviour of wood filled impact limiters and importance for quality surveillance during manufacturing N2 - The moisture content of wood is known to have a significant influence on the wood's mechanical properties. Using wood as an energy absorber in impact limiters of packages for the transport of radioactive material, it is of particular importance to ensure the moisture content and thus relevant mechanical properties to be in specified limits. The paper surveys the influence of wood moisture content on the mechanical properties of wood. Different measuring methods are discussed with respect to in situ applicability, accuracy and effort. The results of an experimental analysis of the accuracy of hand held moisture metres using the electrical resistance method are discussed. Conclusions are drawn regarding the measurement of moisture content of wood upon delivery as well as of complete impact limiter assemblies. Requirements for quality surveillance during manufacturing of wood filled impact limiters are derived and it is exemplified how to meet them. Construction, manufacturing and inspection of impact limiter encapsulation with regard to leak tightness are addressed. KW - Electrical resistance method KW - Impact limiter KW - Moisture content KW - Moisture metre KW - Wood PY - 2012 DO - https://doi.org/10.1179/1746510913Y.0000000023 SN - 1746-5095 SN - 1746-5109 SN - 0957-476X VL - 23 IS - 3-4 SP - 179 EP - 185 PB - Ramtrans Publ. CY - Ashford AN - OPUS4-29243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Martin A1 - Schilling, O. A1 - Kuschke, Christian A1 - Darnstädt, A. A1 - Schubert, Sven A1 - Günther, U. A1 - Wille, Frank T1 - Requirements for management systems for manufacturing of transport packages: the new revision of BAM-GGR 011 guideline N2 - In accordance with IAEA SSR-6 para 306 a management system shall be established and implemented to ensure compliance with the relevant provisions of the IAEA regulations. BAM has issued an update of the guideline: the BAM-GGR 011. The new revision describes necessary quality assurance measures for design, manufacture, testing, documentation, use, maintenance and inspection of packagings for package designs requiring competent authority approval for the transport of radioactive material. The measures can be categorised as system-related and design-related. They are independently approved and monitored by the German competent authority BAM and its authorised expert (BAM/T). The qualification of the organisation applying for the design approval certificate is reviewed in the context of the design approval procedure. The quality assurance measures for manufacture consist of three main steps. Pre-assessment of manufacturing documents such as quality plans, specifications etc., Manufacturing inspections according the pre-assessed documents and inspection before commissioning including documentation review. Periodic inspections during operation as well as relevant specifications for use and maintenance ensure that the properties specified in the approval certificate are preserved over the package life time. Special provisions for the return on experience regarding operational feedback for design, manufacture, use, maintenance and inspection are given. Special focus shall be given here to the rearranged and meanwhile established system of manufacturing inspections. This includes more transparent roles for a) the Producers authorised inspection 11282 representative, b) the independent inspection expert (S), acting on behalf of the manufacturer with acceptance of BAM, and c) BAM or its authorised expert (BAM/T). Additional attention shall be drawn to the management of deviations during manufacturing and provisions for maintenance and periodic inspections. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Quality assurance KW - Transport KW - Manufacturing KW - Surveillance KW - Radioactive material PY - 2019 SP - Paper 1128, 1 AN - OPUS4-49059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Christian A1 - Thore, Johannes A1 - Clozel, Mélanie A1 - Günster, Jens A1 - Wilbig, Janka A1 - Meyer, Andreas T1 - Additive manufacturing of metallic glass from powder in space N2 - Additive manufacturing of metals – and in particular building with laser-based powder bed fusion – is highly flexible and allows high-resolution features and feedstock savings. Meanwhile, though space stations in low Earth orbit are established, a set of visits to the Moon have been performed, and humankind can send out rovers to explore Venus and Mars, none of these milestone missions is equipped with technology to manufacture functional metallic parts or tools in space. In order to advance space exploration to long-term missions beyond low Earth orbit, it will be crucial to develop and employ technology for in-space manufacturing (ISM) and in-situ resource utilisation (ISRU). To use the advantages of laser-based powder bed fusion in these endeavours, the challenge of powder handling in microgravity must be met. Here we present a device capable of building parts using metallic powders in microgravity. This was proven on several sounding rocket flights, on which occasions Zr-based metallic glass parts produced by additive manufacturing in space were built. The findings of this work demonstrate that building parts using powder feedstock, which is more compact to transport into space than wire, is possible in microgravity environments. This thus significantly advances ISRU and ISM and paves the way for future tests in prolonged microgravity settings. KW - Metallic Glass KW - Additive Manufacturing KW - Space PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600667 DO - https://doi.org/10.1038/s41526-023-00327-7 VL - 9 SP - 1 EP - 9 PB - Springer Nature AN - OPUS4-60066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -