TY - JOUR A1 - Scheuerlein, C. A1 - Andrieux, J. A1 - Michels, M. A1 - Lackner, F. A1 - Chiriac, R. A1 - Hagner, M. A1 - Di Michiel, M. A1 - Meyer, Christian A1 - Toche, F. ED - Foley, C. P. T1 - Effect of the fabrication route on the phase and volume changes during the reaction heat treatment of Nb3Sn superconducting wires N2 - Accelerator magnets that can reach magnetic fields well beyond the Nb-Ti performance limits are presently being built and developed, using Nb3Sn superconductors. This technology requires reaction heat treatment (RHT) of the magnet coils, during which Nb3Sn is formed from its ductile precursor materials (a “wind and react” approach). The Nb3Sn microstructure and microchemistry are strongly influenced by the conductor fabrication route, and by the Phase changes during RHT. By combining in situ differential scanning calorimetry, high Energy synchrotron x-ray diffraction, and micro-tomography experiments, we have acquired a unique data set that describes in great detail the phase and microstructure changes that take place during the processing of restacked rod process (RRP), powder-in-tube (PIT), and internal tin (IT) Nb3Sn wires. At temperatures below 450 ° the phase evolutions in the three wire types are similar, with respectively solid state interdiffusion of Cu and Sn, Cu6Sn5 formation, and Cu6Sn5 peritectic transformation. Distinct differences in phase evolutions in the wires are found when temperatures exceed 450 °C. The volume changes of the conductor during RHT are a difficulty in the production of Nb3Sn accelerator magnets. We compare the wire diameter changes measured in situ by dilatometry with the phase and void volume evolution of the three types of Nb3Sn wire. Unlike the Nb3Sn wire length changes, the wire diameter evolution is characteristic for each Nb3Sn wire type. The strongest volume increase, of about 5%, is observed in the RRP wire, where the main diameter increase occurs above 600 °C upon Nb3Sn formation. KW - Nb3Sn KW - Microstructure KW - Phase transformations KW - Volume changes KW - X-ray diffraction KW - Differential scanning calorimetry KW - Synchrotron micro-tomography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505128 DO - https://doi.org/10.1088/1361-6668/ab627c VL - 33 IS - 3 SP - 034004 PB - IOP Publishing CY - Bristol (UK) AN - OPUS4-50512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Clozel, Melanie A1 - Neumann, Christian A1 - Thore, Johannes A1 - Kolbe, Matthias A1 - Yang, Fan A1 - Gutowski, Olof A1 - Dippel, Ann-Christin A1 - Ruschel, Lucas M. A1 - Busch, Ralf A1 - Altenbach, Christoph A1 - Akuata, Chijioke Kenneth A1 - Zander, Daniela A1 - Wilbig, Janka A1 - Meyer, Andreas T1 - Microstructure formation during gas flow-assisted additive manufacturing of a metallic glass powder on ground and in microgravity N2 - We studied bulk metallic glasses produced from gas flow-assisted laser-based powder bed fusion process, which is capable of additive manufacturing metallic parts in microgravity. A Zr-based bulk metallic glass composition Zr₅₉ˏ₃Cu₂₈ˏ₈Al₁₀ˏ₄Nb₁ˏ₅ has been processed on ground and in microgravity in a compact sounding rocket payload MARS-M. Microstructure characterization was performed using electron microscopy and X-ray diffraction computed tomography, which cope with small amounts of sample materials, especially for those fabricated under microgravity conditions. Very similar microstructures and crystalline fractions are observed in sample manufactured on ground and in microgravity, which shows that process parameters of conventional laser powder bed fusion for manufacturing metallic glasses can be transferred to the processes in microgravity. Two different origins of crystallization have been identified in the Zr₅₉ˏ₃Cu₂₈ˏ₈Al₁₀ˏ₄Nb₁ˏ₅ sample. The preferred occurrence of CuZr₂ at the interlayer boundaries is likely a result of recrystallization from the undercooled melt and hence associated with laser scanning strategy. In contrast, the more uniformly distributed Al₃Zr₄ phase is considered to be triggered by the formation of Cu₂Zr₄O. Thus, for the fabrication of fully amorphous builds both on ground and in space, our findings point to higher scanning speeds and lower oxygen contents, while the latter can also be used to tune the crystalline fractions in the sample. KW - Gas flow-assisted laser-based powder bed fusion KW - Microgravity KW - Glass-forming alloys KW - X-ray diffraction tomography PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-641253 DO - https://doi.org/10.1007/s40964-025-01275-2 SN - 2363-9512 SP - 1 EP - 14 PB - Springer Science and Business Media LLC CY - Cham, Switzerland AN - OPUS4-64125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Christian A1 - Thore, Johannes A1 - Clozel, Mélanie A1 - Günster, Jens A1 - Wilbig, Janka A1 - Meyer, Andreas T1 - Additive manufacturing of metallic glass from powder in space N2 - Additive manufacturing of metals – and in particular building with laser-based powder bed fusion – is highly flexible and allows high-resolution features and feedstock savings. Meanwhile, though space stations in low Earth orbit are established, a set of visits to the Moon have been performed, and humankind can send out rovers to explore Venus and Mars, none of these milestone missions is equipped with technology to manufacture functional metallic parts or tools in space. In order to advance space exploration to long-term missions beyond low Earth orbit, it will be crucial to develop and employ technology for in-space manufacturing (ISM) and in-situ resource utilisation (ISRU). To use the advantages of laser-based powder bed fusion in these endeavours, the challenge of powder handling in microgravity must be met. Here we present a device capable of building parts using metallic powders in microgravity. This was proven on several sounding rocket flights, on which occasions Zr-based metallic glass parts produced by additive manufacturing in space were built. The findings of this work demonstrate that building parts using powder feedstock, which is more compact to transport into space than wire, is possible in microgravity environments. This thus significantly advances ISRU and ISM and paves the way for future tests in prolonged microgravity settings. KW - Metallic Glass KW - Additive Manufacturing KW - Space PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600667 DO - https://doi.org/10.1038/s41526-023-00327-7 VL - 9 SP - 1 EP - 9 PB - Springer Nature AN - OPUS4-60066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller-Elmau, Johanna A1 - Meyer, Frank A1 - Goebbert, Christian A1 - Günster, Jens T1 - Manufacturing Ceramics with Light N2 - Additive manufacturing of extremely complex and filigree geometries from ceramic materials is a fascinating topic as ceramic materials are especially suitable for extremely small structures thanks to their physicochemical properties: they are chemically stable and do not corrode, while exhibiting unique mechanical properties especially in the micrometre range (Fig. 1). In addition, the ceramic structures made of yttria-stabilized zirconia (YSZ) shown in the figure are transparent, which makes them interesting candidates for the development of miniaturized optical components. The refractive index of YSZ measures 2,2 and is therefore considerably higher than that of polymer-based materials or glasses. The possibility of building this type of structure is enabled with the use of ceramic slurries with sufficiently high Transparency for the volumetric process of two-photon polymerization, which uses a femtosecond-short-pulse laser to structure photo-crosslinkable resins in the volume of one droplet. Slurries with even further optimized transparency allow even the application of xolography, a volumetric process that builds components with relatively low resolution, but in relatively large volumes and higher productivity. In the scope of the research presented here, for the first time, this process is applied to sintered ceramic materials. To be able to use minute ceramic structures as real components, an approach for the hybridization of processes ispresented in which components in the centimetre range, with relatively low resolution, are combined with very high-resolution nanostructures. KW - Additive manufacturing KW - Zirconia KW - Two-photon-polymerization KW - Nanopowder PY - 2025 SN - 0173-9913 VL - 4 SP - 34 EP - 41 PB - Göller Verlag GmbH CY - Baden-Baden AN - OPUS4-65070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -