TY - CONF A1 - Liebner, Christian T1 - Standard operating procedures for the determination of explosion indices T2 - 2. Meeting "SAFEKINEX" CY - Berlin, Germany DA - 2003-09-29 PY - 2003 AN - OPUS4-3867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian T1 - Self-ignition of hydrocarbon-oxidiser mixtures at pressures up to 30 bar T2 - 2nd International Conference "Fire Bridge - Advances and future of accidental combustion research" CY - Ulster, Northern Ireland DA - 2005-05-09 KW - Autoignition KW - Ignition Temperature KW - Cool Flame KW - Slow Combustion PY - 2005 SP - 18 pages PB - University of Ulster CY - Ulster AN - OPUS4-7410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Holtappels, Kai A1 - Liebner, Christian A1 - Schröder, Volkmar A1 - Schildberg, H.-P. T1 - Report on experimentally determined explosion limits, explosion pressures and rates of explosion pressure rise - Part 1: methane, hydrogen and propylene; Contract No. EVG1-CT-2002-00072 KW - Explosion indices KW - Dependence of pressure KW - Temperature KW - Ignition energy and fuel content PY - 2006 UR - http://www.morechemistry.com/SAFEKINEX/deliverables/44.Del.%20No.%208.pdf IS - 8 SP - 1 EP - 149 PB - Bundesanstalt für Materialforschung und -prüfung CY - Berlin AN - OPUS4-12434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Liebner, Christian A1 - Silakova, M.A. A1 - Pasman, H.J. A1 - Fernández Giua, C. T1 - Report on experiments needed for kinetic model development (high pressure) KW - Explosion indices KW - Dependence of pressure KW - Temperature KW - Ignition energy and fuel content PY - 2006 UR - http://www.morechemistry.com/SAFEKINEX/deliverables/43.Del.%20No.33_fin.pdf IS - EVG1-CT-2002-00072 SP - 18 pages, Add.A 40p., Add.B 37p. AN - OPUS4-12463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Holtappels, Kai A1 - Schröder, Volkmar T1 - Safety characteristics of hydrogen at super ambient conditions: Lubricant contamination influencing the auto ignition temperature T2 - World Hydrogen Energy Conference 2006 CY - Lyon, France DA - 2006-06-13 PY - 2006 AN - OPUS4-12425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liebner, Christian A1 - Holtappels, Kai A1 - Schröder, Volkmar T1 - Untersuchungsmethoden für Selbstentzündungsprozesse von Brenngasen PY - 2005 DO - https://doi.org/10.1002/cite.200590361 SN - 0009-286X SN - 1522-2640 VL - 77 IS - 8 SP - 1125 EP - 1126 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-11886 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schröder, Volkmar A1 - Holtappels, Kai A1 - Liebner, Christian T1 - Hydrocarbon oxidation processes at non-atmospheric conditions - EC-project SAFEKINEX N2 - The project will develop test methodology for explosion indices al non-ambient conditions, a validated data base on them and on many other explosion indices as a function of pressure and temperature. Further, models will be developed, enabling prediction of behaviour of reactive systems and predicting explosion parameters. T2 - 3rd International ESMG Symposium: Process Safety and Industrial Explosion Protection CY - Nuremberg, Germany DA - 2004-03-16 KW - Gas explosion KW - Safety characteristics KW - Oxidation kinetics KW - Explosion limits KW - Self ignition PY - 2004 SN - 3-9807567-3-4 SP - 1(?) EP - 10(?) PB - European Safety Management Group CY - Hamm AN - OPUS4-5783 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Holtappels, Kai A1 - Schröder, Volkmar A1 - Pasman, H. A1 - Pekalski, A. A1 - Carson, D. T1 - Experimental factors influencing explosion indices determination T2 - 2. Safekinex Meeting CY - Berlin, Germany DA - 2003-09-30 PY - 2003 AN - OPUS4-5792 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Holtappels, Kai A1 - Schröder, Volkmar T1 - our step forward to the Deliverable No. 5, Report on experimentally determined self-ignition temperature and ignition delay time T2 - Safekinex Workpackage Meeting; Universität Karlsruhe CY - Karlsruhe, Germany DA - 2004-05-28 PY - 2004 AN - OPUS4-5795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Holtappels, Kai A1 - Schröder, Volkmar T1 - First experimental results, IDT of n-Butane Auto Ignition T2 - 3. Safekinex Meeting CY - Nancy, France DA - 2004-01-19 PY - 2004 AN - OPUS4-5797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Holtappels, Kai A1 - Schröder, Volkmar T1 - SAFEKINEX Standard Operating Procedures (SOPs) T2 - 2. Safekinex Meeting CY - Berlin, Germany DA - 2003-09-29 PY - 2003 AN - OPUS4-5799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Holtappels, Kai A1 - Liebner, Christian A1 - Scheid, Marc A1 - Schröder, Volkmar T1 - Volumeneinfluss auf die Explosionskenngrößen von Wasserstoff und Methan bei nicht-atmosphärischen Bedingungen KW - SAFEKINEX KW - Explosionsgrenzen KW - Explosionsdrücke KW - Raten des Druckanstiegs PY - 2005 DO - https://doi.org/10.1002/cite.200590143 SN - 0009-286X SN - 1522-2640 VL - 77 IS - 8 SP - 1141 EP - 1142 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-10857 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Holtappels, Kai A1 - Schröder, Volkmar T1 - Untersuchungsmethoden für Selbstentzpndungsprozesse bei Brenngasen T2 - GVC/DECHEMA-Jahrestagung 2005 CY - Wiesbaden, Germany DA - 2005-09-07 PY - 2005 AN - OPUS4-10820 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Holtappels, Kai A1 - Schröder, Volkmar T1 - Selbstentzündungsprozesse bei nichtatmosphärischen Bedingungen - Die Identifizierung unerwarteter Risiken T2 - 7. Fachtagung "Anlagen-, Arbeits- und Umweltsicherheit" CY - Köthen, Germany DA - 2004-11-04 PY - 2004 AN - OPUS4-4133 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Schröder, Volkmar A1 - Holtappels, Kai T1 - Safety characteristics of hydrogen at super ambient conditions: Lubricant contamination influencing the Auto Ignition Temperature T2 - WHEC 2006 - 16th World Hydrogen Energy Conference CY - Lyon, France DA - 2006-06-13 KW - Hydrogen KW - Safety Characteristics KW - Auto Ignition KW - Lubricant KW - Motor Oil PY - 2013 SN - 978-1-62276-540-9 SP - 7 pages (Ref 638) PB - International Association for Hydrogen Energy CY - Lyon AN - OPUS4-12508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Liebner, Christian A1 - Holtappels, Kai A1 - Schröder, Volkmar A1 - Pasman, H. A1 - Pekalski, A. T1 - Report on experimentally determined self-ignition temperature and the ignition delay time KW - Autoignition KW - Pressure Dependency KW - Ignition Temperature KW - Cool Flame KW - Slow Combustion KW - Gases KW - n-Butane KW - Ethylene KW - Methane PY - 2005 UR - http://www.morechemistry.com/SAFEKINEX/deliverables/26.Del.%20No.%205%20SIT+IDT%20steel+quartz.pdf SP - 74 pages AN - OPUS4-5975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Holtappels, Kai A1 - Liebner, Christian A1 - Schröder, Volkmar A1 - Pasman, H. A1 - Pekalski, A. A1 - Carson, D. A1 - Proust, C. T1 - Report on the experimental factors influencing explosion indices determination KW - SAFEKINEX KW - Explosionskenngrößen KW - Experimentelle Einflüsse KW - Nicht-atmosphärische Bedingungen PY - 2004 UR - http://www.morechemistry.com/SAFEKINEX/deliverables/02.Del.%20No.%202%20Exp.%20Factors%20Expl.%20Indices%20Det.pdf SP - 1 EP - 52 AN - OPUS4-5976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Holtappels, Kai A1 - Schröder, Volkmar T1 - Self-ignition of n-Butane/Air NTC-Region in the stainless steel vessel - Experimental results - T2 - Safekinex Project Meeting, BASF CY - Ludwigshafen am Rhein, Germany DA - 2006-02-14 PY - 2006 AN - OPUS4-12047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lange, T. A1 - Heinrich, Sebastian A1 - Liebner, Christian A1 - Hieronymus, Hartmut A1 - Klemm, E. T1 - Partial oxidation of o-xylene to phthalic anhydride inside of the explosion regime using a micro structured reactor T2 - 2012 AIChE Annual meeting CY - Pittsburgh, PA, USA DA - 2012-10-28 KW - O-xylene oxidation KW - V2O5/TiO2 catalyst KW - Micro structured reactor KW - Explosion regime KW - Micro reactor KW - Explosion KW - Phthalic anhydride KW - Partial oxidation PY - 2013 SN - 9781622767380 SP - 90 EP - 93 AN - OPUS4-28706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Heinrich, Sebastian A1 - Edeling, Florian A1 - Hieronymus, Hartmut A1 - Lange, Th. A1 - Klemm, E. T1 - Zündung, Ausbreitung und Unterdrückung von Explosionen in einem Mikroreaktor T2 - 13. BAM-PTB-Kolloquium zur chemischen und physikalischen Sicherheitstechnik CY - Braunschweig, Germany DA - 2013-06-18 PY - 2013 AN - OPUS4-28717 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liebner, Christian A1 - Fischer, J. A1 - Heinrich, Sebastian A1 - Lange, T. A1 - Hieronymus, Hartmut A1 - Klemm, E. T1 - Are micro reactors inherently safe? An investigation of gas phase explosion propagation limits on ethene mixtures N2 - A method for the determination of safety properties for micro reactors and micro structured components is presented. Micro structured reactors are not inherently safe but the range of safe operating conditions of micro reactors are extended since the explosion region is reduced. The λ/3 rule was demonstrated to be applicable to micro scale tubes for stoichiometric mixtures of ethane–oxygen and ethane–nitrous oxide. Furthermore first results from an investigation concerning detonation propagation through a micro reactor of non-ideal geometry are shown. Initial pressure investigated is ranging from low pressure up to 100 kPa. KW - Micro reactor KW - Explosion propagation limits KW - Chemical safety KW - Investigation method PY - 2012 DO - https://doi.org/10.1016/j.psep.2011.08.006 SN - 0957-5820 SN - 1744-3598 VL - 90 IS - 2 SP - 77 EP - 82 PB - Elsevier CY - Amsterdam AN - OPUS4-25594 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Heinrich, Sebastian A1 - Edeling, Florian A1 - Hieronymus, Hartmut A1 - Lange, T. A1 - Klemm, E. ED - Pierucci, S. ED - Klemes, J.J. ED - De Rademaeker, E. ED - Fabiano, B. ED - Buratti, S.S. T1 - Explosion initiation, propagation, and suppression inside a micro structured reactor N2 - The present contribution reports on specific aspects of safety engineering in heterogeneously catalysed oxidation reactions. Results for ethene-oxygen-mixtures in a continuous-flow micro reactor are reported related to the safety issues of the ethylene oxide process. Initial pressure is ranging from below 1 bar up to 10 bar at initial temperatures ranging from room temperature up to 673 K. Micro structured reactors offer an extended range of operating conditions. The key issue to be discussed in the present contribution is how to safely operate a micro reactor at conditions in conventional devices to be characterised as inside the explosion region. Within certain limits suppression of explosion inside a micro reactor can be achieved. This holds true for chain reactions as well as runaway reactions. Nevertheless it is not possible to safely operate micro structured reactors at any condition. Therefore, explosion propagation through a Micro structured reactor and initiation of gas phase explosions by hot spots inside the reactor were investigated. The investigation methods applied are subject to actual standardization. T2 - 14th International symposium on loss prevention and safety promotion in the process industries CY - Florence, Italy DA - 12.05.2013 KW - Micro reactor KW - Explosion KW - Safety PY - 2013 SN - 978-88-95608-22-8 DO - https://doi.org/10.3303/CET1331101 SN - 1974-9791 N1 - Serientitel: Chemical engineering transactions – Series title: Chemical engineering transactions IS - 31 SP - 601 EP - 606 PB - AIDIC, Associazione Italiana di Ingegneria Chimica CY - Milano AN - OPUS4-28583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Lange, Th. A1 - Heinrich, Sebastian A1 - Hieronymus, Hartmut A1 - Klemm, E. T1 - Hot Spots as Ignition source inside Micro Reactors with catalyst coatings T2 - ECCE 9th European Congress of Chemical Engineering CY - Den Haag, Netherlands DA - 2013-04-21 PY - 2013 AN - OPUS4-28595 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Edeling, Florian A1 - Hieronymus, Hartmut A1 - Lange, Th. A1 - Klemm, E. T1 - Explosion Initiation, Propagation, and Suppression inside a Micro Structured Reactor T2 - Loss Prevention 2013 CY - Florence, Italy DA - 2013-05-12 PY - 2013 AN - OPUS4-28591 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hieronymus, Hartmut A1 - Fischer, J. A1 - Heinrich, Sebastian A1 - Liebner, Christian A1 - Lange, T. A1 - Klemm, E. T1 - Sicherheitstechnische Untersuchungen zum Betrieb von Mikroreaktoren im Explosionsbereich N2 - Es wird eine Methode zur sicherheitstechnischen Untersuchung von Mikroreaktoren und mikrostrukturierten Komponenten, die im Explosionsbereich betrieben werden sollen, vorgestellt. Mikrostrukturierte Reaktoren sind nicht inhärent sicher, wenngleich der Bereich der sicheren Betriebsbedingungen gegenüber konventionellen Reaktoren erweitert ist. Der Explosionsbereich kann durch die Mikrostrukturen eingeengt werden. Am Beispiel von Ethylen/Sauerstoff-Gemischen und Ethylen/N2O-Gemischen wird hinsichtlich der Ausbreitung von Detonationen durch Kapillarrohre gezeigt, dass die sogenannte λ/3-Regel angewandt werden kann. Darüber hinaus werden erste Ergebnisse der Untersuchung der Ausbreitung von Explosionen durch einen Mikroreaktor mit rechteckigem Strömungskanal vorgestellt. KW - Detonationszellbreite KW - Explosionsgrenzen KW - Mikroreaktoren KW - Sicherheitstechnik KW - Detonation cell width KW - Explosion limit KW - Microreactor KW - Saftey engineering PY - 2011 DO - https://doi.org/10.1002/cite.201100112 SN - 0009-286X SN - 1522-2640 VL - 83 IS - 10 SP - 1742 EP - 1747 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-24486 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roduner, E. A1 - Kaim, W. A1 - Sarkar, B. A1 - Urlacher, V.B. A1 - Pleiss, J. A1 - Gläser, R. A1 - Einicke, W.-D. A1 - Sprenger, G.A. A1 - Beifuß, U. A1 - Klemm, E. A1 - Liebner, Christian A1 - Hieronymus, Hartmut A1 - Hsu, S.-F. A1 - Plietker, B. A1 - Laschat, s. T1 - Selective catalytic oxidation of C-H bonds with molecular oxygen N2 - Although catalytic reductions, cross-couplings, metathesis, and oxidation of C=C double bonds are well established, the corresponding catalytic hydroxylations of C–H bonds in alkanes, arenes, or benzylic (allylic) positions, particularly with O2, the cheapest, 'greenest', and most abundant oxidant, are severely lacking. Certainly, some promising examples in homogenous and heterogenous catalysis exist, as well as enzymes that can perform catalytic aerobic oxidations on various substrates, but these have never achieved an industrial-scale, owing to a low space-time-yield and poor stability. This review illustrates recent advances in aerobic oxidation catalysis by discussing selected examples, and aims to stimulate further exciting work in this area. Theoretical work on catalyst precursors, resting states, and elementary steps, as well as model reactions complemented by spectroscopic studies provide detailed insight into the molecular mechanisms of oxidation catalyses and pave the way for preparative applications. However, O2 also poses a safety hazard, especially when used for large scale reactions, therefore sophisticated methodologies have been developed to minimize these risks and to allow convenient transfer onto industrial scale. KW - Coupling reactions KW - Feedstocks KW - Hydroxylation KW - Molecular oxygen KW - Oxidation KW - Catalytic oxidation KW - Micro reactor KW - Explosion KW - Safety PY - 2013 DO - https://doi.org/10.1002/cctc.201200266 SN - 1867-3880 VL - 5 IS - 1 SP - 82 EP - 112 PB - Wiley-VCH CY - Weinheim AN - OPUS4-27637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Holtappels, Kai A1 - Schröder, Volkmar T1 - Selbstentzündungsprozesse bei nichtatmosphärischen Bedingungen - Die Identifizierung unerwarteter Risiken T2 - 7. Fachtagung Anlagen-, Arbeits- und Umweltsicherheit CY - Köthen, Deutschland DA - 2004-11-04 PY - 2004 PB - VDI-Verl. CY - Halle AN - OPUS4-5218 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Fischer, Johannes A1 - Hieronymus, Hartmut T1 - Entwicklung von Untersuchungsverfahren für die Sicherheit von µ-Reaktoren (Gasphase), Teil 1 Problemdefinition T2 - Sitzung der AG Sicherheit und Zulassung, Gruppe "Methoden", DECHEMA MikroChemTec CY - Frankfurt am Main, Germany DA - 2007-07-10 PY - 2007 AN - OPUS4-15616 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Hieronymus, Hartmut A1 - Fischer, J. A1 - Klemm, E. T1 - Mikrostrukturierte Reaktoren im Explosionsbereich - Untersuchungsmethoden zu Fragen der inhärenten Sicherheit T2 - 9. Fachtagung "Anlagen-, Arbeits- und Umweltsicherheit" CY - Köthen, Germany DA - 2008-11-06 PY - 2008 AN - OPUS4-18335 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Liebner, Christian A1 - Hieronymus, Hartmut A1 - Fischer, J. A1 - Klemm, E. T1 - Mikrostrukturierte Reaktoren im Explosionsbereich - Untersuchungsmethoden zu Fragen der (nicht vorhandenen) inhärenten Sicherheit T2 - 9. Fachtagung "Anlagen-, Arbeits- und Umweltsicherheit" CY - Köthen, Deutschland DA - 2008-11-06 KW - Mikroverfahrenstechnik KW - Mikroreaktor KW - Explosionsbereich KW - Ethylen KW - Explosionsausbreitung PY - 2008 SN - 978-3-89746-099-7 SP - 1 EP - 4 PB - VDI, Hallescher Bezirksverein CY - Halle AN - OPUS4-18373 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Holtappels, Kai A1 - Schröder, Volkmar T1 - Scale up effects and sensor response time influence on self-ignition phenomena determination - First results - T2 - Project Meeting, EU Project SAFEKINEX, University of Leeds CY - Leeds, England DA - 2005-08-19 PY - 2005 AN - OPUS4-10309 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Holtappels, Kai A1 - Schröder, Volkmar T1 - Self ignition: Experiments on explosion safety - determination procedures, phenomena and results - T2 - Workshop des EU-Projektes SAFEKINEX bei Gaz de France CY - Paris, France DA - 2006-11-28 PY - 2006 AN - OPUS4-14163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Holtappels, Kai A1 - Schröder, Volkmar T1 - Experimental Determination of self-ignition temperature and ignition delay time T2 - Midterm-Review Meeting SAFEKINEX CY - Brussels, Belgium DA - 2005-02-04 PY - 2005 AN - OPUS4-6886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Silakova, M.A. A1 - Pasman, H.J. T1 - Towards a better control of hydrocarbon oxidation: A study of self-ignition phenomena at low temperature and at ambient and elevated pressure N2 - Enhancement of process safety and efficiency are the drivers in EU project SAFEKINEX investigating the mechanisms of hydrocarbon oxidation and explosion safety indices of the associated mixtures. The project produces a wealth of data on explosive behavior at elevated pressures and temperatures. This paper describes some of the self-ignition aspects. T2 - CHISA 2006 - 17th international congress of chemical and process engineering CY - Prague, Czech Republic DA - 2006-08-27 KW - Auto ignition KW - Safety characteristics KW - Hydrocarbon oxidation PY - 2009 SP - 1 EP - 5(?) AN - OPUS4-19746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Heinrich, Sebastian A1 - Liebner, Christian A1 - Hieronymus, Hartmut A1 - Klemm, E. T1 - Durchführung heterogen katalysierter Selektivoxidationen im Explosionsbereich unter Einsatz von Mikrostrukturreaktoren T2 - 10. Fachtagung Anlagen-, Arbeits- und Umweltsicherheit CY - Köthen, Deutschland DA - 2010-11-04 KW - Mikroreaktor KW - Oxidation KW - Explosion PY - 2010 SN - 978-3-89746-119-2 IS - P-03 SP - 1 EP - 6 CY - Frankfurt/M. AN - OPUS4-22359 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Heinrich, Sebastian A1 - Hieronymus, Hartmut A1 - Fischer, J. A1 - Klemm, E. T1 - Untersuchungen zur Explosionsdynamik in Mikrostrukturen T2 - 671. DECHEMA-Kolloquium CY - Frankfurt am Main, Germany DA - 2010-10-28 PY - 2010 AN - OPUS4-22253 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinrich, Sebastian A1 - Edeling, Florian A1 - Liebner, Christian A1 - Hieronymus, Hartmut A1 - Lange, T. A1 - Klemm, E. T1 - Catalyst as ignition source of an explosion inside a microreactor N2 - The present issue reports on a specific aspect of safety engineering of the heterogeneously catalysed oxidation of ethene in a continuous-flow microreactor. Conversion of ethene and the corresponding surface temperature of the catalyst were monitored for different reactor temperatures and total flow rates with a stoichiometric ethene/oxygen mixture for total oxidation. Safe operation of the highly exothermic oxidation was possible, but not in the whole parameter range. At high reactor temperatures and flow rates, ignition of an explosion inside the microreactor caused by a hot spot on the surface of the catalyst was observed for the first time. KW - Catalyst KW - Ethene KW - Explosions KW - Hot spot KW - Microstructure KW - Safety PY - 2012 DO - https://doi.org/10.1016/j.ces.2012.08.049 SN - 0009-2509 VL - 84 SP - 540 EP - 543 PB - Elsevier CY - Amsterdam AN - OPUS4-26782 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hübner, S. A1 - Kressirer, S. A1 - Kralisch, D. A1 - Bludszuweit-Philipp, C. A1 - Lukow, K. A1 - Jänich, I. A1 - Schilling, A. A1 - Hieronymus, Hartmut A1 - Liebner, Christian A1 - Jähnisch, K. T1 - Ultrasound and microstructures - a promising combination? N2 - Short diffusion paths and high specific interfacial areas in microstructured devices can increase mass transfer rates and thus accelerate multiphase reactions. This effect can be intensified by the application of ultrasound. Herein, we report on the design and testing of a novel versatile setup for a continuous ultrasound-supported multiphase process in microstructured devices on a preparative scale. The ultrasonic energy is introduced indirectly into the microstructured device through pressurized water as transfer medium. First, we monitored the influence of ultrasound on the slug flow of a liquid/liquid two-phase system in a channel with a high-speed camera. To quantify the influence of ultrasound, the hydrolysis of p-nitrophenyl acetate was utilized as a model reaction. Microstructured devices with varying channel diameter, shape, and material were applied with and without ultrasonication at flow rates in the mL min-1 range. The continuous procedures were then compared and evaluated by performing a simplified life cycle assessment. KW - Biphasic reactions KW - Hydrolysis KW - Interfaces KW - Liquids KW - Ultrasound PY - 2012 DO - https://doi.org/10.1002/cssc.201100369 SN - 1864-5631 SN - 1864-564X VL - 5 IS - 2 SP - 279 EP - 288 PB - Wiley-VCH CY - Weinheim AN - OPUS4-25476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lange, T. A1 - Heinrich, Sebastian A1 - Liebner, Christian A1 - Hieronymus, Hartmut A1 - Klemm, E. T1 - Reaction engineering investigations of the heterogeneously catalyzed partial oxidation of o-xylene in the explosion regime using a microfixed bed reactor N2 - The heterogeneously catalyzed selective gas phase oxidation of o-xylene was investigated, using a microstructured fixed bed reactor, inside of the explosion regime. The reaction was carried out with high amounts of o-xylene in air and stoichiometric with oxygen using a V2O5/TiO2-catalyst prepared through grafting. There were no significant losses in the selectivity to phthalic anhydride observable, during the measurements in the explosion regime, with feed compositions of up to 7 vol% o-xylene. Also the space-time yield was up to 2.3 times higher in comparison to conventional reaction conditions. An increase of the selectivity to total oxidation products was observed at higher o-xylene concentrations between 10 and 25 vol% o-xylene, which possibly was caused by the formation of a hotspot. The investigation of the used catalyst revealed a thermally induced deactivation due to phase transition of anatase into rutil and formation of crystalline vanadium oxide. Despite that expected hotspot at high oxylene concentrations, there was no ignition or explosion of the gas mixture observable. KW - O-xylene oxidation KW - Phthalic anhydride KW - V2O5/TiO2-catalyst KW - Microfixed bed reactor KW - Explosion regime KW - Hotspot PY - 2012 DO - https://doi.org/10.1016/j.ces.2011.10.072 SN - 0009-2509 VL - 69 IS - 1 SP - 440 EP - 448 PB - Elsevier CY - Amsterdam AN - OPUS4-25463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Hieronymus, Hartmut A1 - Heinrich, Sebastian A1 - Edeling, Florian A1 - Lange, T. A1 - Klemm, E. ED - Beyer, M. ED - Stolz, T. T1 - Zündung, Ausbreitung und Unterdrückung von Explosionen in einem Mikroreaktor N2 - Der vorliegende Beitrag behandelt spezifische Aspekte der Sicherheitstechnik bei heterogen katalysierten Oxidationsreaktionen. Ergebnisse von Explosionsuntersuchungen an Ethen-Sauerstoffgemischen in einem kontinuierlich betriebenen Mikroreaktor, die beispielsweise für den Ethylenoxidprozess relevant sind, werden vorgestellt. Der Anfangsdruck der untersuchten Eduktgemische lag zwischen 1000 hPa und 10000 hPa bei Anfangstemperaturen zwischen Umgebungstemperatur und einer Temperatur bis zu 673 K. Mikrostrukturierte Reaktoren bieten einen erweiterten Bereich von Betriebsbedingungen. Die Untersuchungen zielen auf den sicheren Betrieb eines Mikroreaktors bei Bedingungen, die bei konventionellen Reaktoren als innerhalb des Explosionsbereichs eingestuft werden, ab. In bestimmten Grenzen kann eine Unterdrückung von Explosionen in einem Mikroreaktor erreicht werden. Es ist jedoch nicht möglich, einen Mikroreaktor unter allen Bedingungen sicher zu betreiben. Aus diesen Gründen wurde die Explosionsausbreitung durch einen mikrostrukturierten Reaktor hindurch und die Zündung einer Gasphasenexplosion durch Hot-Spots in dem Reaktor untersucht. Die angewandten Untersuchungsmethoden sind Gegenstand aktueller Normungsaktivitäten. T2 - 13. BAM-PTB-Kolloquium zur chemischen und physikalischen Sicherheitstechnik CY - Braunschweig, Germany DA - 18.06.2013 KW - Micro Reactor KW - Explosion KW - Safety PY - 2013 SN - 978-3-95606-062-5 DO - https://doi.org/10.7795/210.20130910K SN - 1868-5838 SP - 90 EP - 98 AN - OPUS4-29849 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Patzelt, Anne-Katrin A1 - Krentel, Daniel T1 - BAM Testgelände Technische Sicherheit (TTS) N2 - Die Präsentation zeigt in Bild und Video die Möglichkeiten auf dem BAM TTS zur Durchführung von Versuchen unterschiedlicher Gefährlichkeitsstufen auf. Sie wendet sich an potentielle künftige Kooperationspartner aus dem Bereich der zivilen Sicherheitsforschung (Polizeibehörden, Feuerwehr, THW, andere Forschungseinrichtungen), um deren Forschungsbedarf mit den an der BAM vorhandenen Testmöglichkeiten abzugleichen und so ebenfalls dem Aufbau von überflüssigen konkurrierenden Parallelstrukturen an anderen Forschungseinrichtungen vorzubeugen. T2 - ForAn Anwendertreffen zum BMBF-Innovationsforum "Zivile Sicherheitsforschung" CY - Berlin, Germany DA - 02.05.2022 KW - Zivile Sicherheitsforschung KW - Großversuche KW - Testgelände PY - 2022 AN - OPUS4-54847 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Balcazar Pust, Emilio A1 - Heinrich, S. A1 - Klemm, E. A1 - Neher, F. T1 - Untersuchungen zur Explosionsausbreitung im Mikroreaktor T2 - Jahrestreffen der ProcessNet-Fachgruppe Mikroverfahrenstechnik CY - Frankfurt am Main, Germany DA - 2013-10-28 PY - 2013 AN - OPUS4-31287 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lange, T. A1 - Heinrich, Sebastian A1 - Liebner, Christian A1 - Hieronymus, Hartmut A1 - Klemm, E. T1 - Reaction engineering investigations of the partial oxidation of o-xylene in the explosion regime - microfixed bed versus catalyst coating N2 - The selective gas phase oxidation of o-xylene was investigated inside of the explosion regime using a microstructured reactor. The V2O5/TiO2 catalyst was used as microfixed bed and as catalyst coating. There were no significant losses of the selectivity to phthalic anhydride with feed compositions up to 7 vol % o-xylene observable. Above 7 vol % the selectivity decreased due to total oxidation, especially for the microfixed bed, which was probably caused by a hotspot. KW - Catalysis KW - Microreactors KW - Partial oxidation KW - Xylene KW - o-Xylene KW - Explosion regime PY - 2013 DO - https://doi.org/10.1002/cite.201200197 SN - 0009-286X SN - 1522-2640 VL - 85 IS - 4 SP - 461 EP - 466 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-30298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lange, T. A1 - Neher, F. A1 - Klemm, E. A1 - Heinrich, Sebastian A1 - Balcazar Pust, Emilio A1 - Liebner, Christian A1 - Hieronymus, Hartmut T1 - Heterogeneous catalysis meets micro reactors: Partial oxidations in the explosion regime N2 - Investigations on primary, secondary and tertiary explosion protection have been performed for micro reactors with slit-like channels which are coated with catalyst. Ethene/oxygen mixtures have been used as model gas mixtures representing explosion group IIB (DIN EN ISO 16852). It could be shown that the explosion regime can be significantly reduced when using micro reactors (primary explosion protection). Furthermore, safe Operation inside the explosion regime is possible with micro reactors (secondary explosion protection), but, at certain conditions thermal runaway and ignition of detonations are possible. An unexpected behaviour has been found, because thermal runaway occurred when Volumetrie flow rate was increased. This behaviour is completely opposite to that of multi tube fixed bed reactors which show an increase of safety when increasing volumetric flow rate. Micro reactors can be constructed pressure-resistant even when detonations occur inside (tertiary explosion protection). For the example of o-xylene oxidation it could be shown that space time yield can be increased significantly when entering explosion regime. T2 - DGMK International conference - Selective oxidation and functionalization: Classical and alternative routes and sources CY - Berlin, Germany DA - 13.10.2014 PY - 2014 SN - 978-3-941721-44-9 VL - 2014-3 SP - 97 EP - 105 AN - OPUS4-31759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Hieronymus, Hartmut A1 - Klemm, E. A1 - Fischer, J. T1 - Sicherheit µ-strukturierter Apparate: Untersuchungsmethoden zur Explosionsausbreitung (Gasphase) T2 - Sitzung des DIN-Arbeitsausschusses "Mikroverfahrenstechnik" CY - Frankfurt am Main, Germany DA - 2010-03-25 PY - 2010 AN - OPUS4-21120 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Hieronymus, Hartmut A1 - Fischer, J. A1 - Klemm, E. T1 - Untersuchungen zur Explosionsausbreitung in mikrostrukturierten Reaktoren T2 - 12. BAM/PTB-Kolloquium zu Fragen der chemischen und physikalischen Sicherheitstechnik CY - Berlin, Germany DA - 2010-06-15 PY - 2010 AN - OPUS4-21437 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Liebner, Christian A1 - Fischer, J. A1 - Hieronymus, Hartmut A1 - Klemm, E. ED - Suter, G. ED - de Rademaeker, E. T1 - Are micro reactors inherently safe? - An investigation of gas phase explosion propagation limits T2 - 13th International symposium on loss prevention and safety promotion in the process industries CY - Brugge, Belgium DA - 2010-06-06 KW - Deflagration KW - Detonation KW - Mikroreaktionstechnik KW - Mikroreaktoren KW - Sicherheitstechnik PY - 2010 SN - 978-90-76019-291 VL - 02 SP - 281 EP - 285 CY - Brugge, Belgium AN - OPUS4-21496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Liebner, Christian A1 - Hieronymus, Hartmut A1 - Fischer, J. A1 - Klemm, E. T1 - Untersuchungen zur Explosionsausbreitung in mikrostrukturierten Reaktoren T2 - 12. Kolloquium zu Fragen der chemischen und physikalischen Sicherheitstechnik CY - Berlin, Deutschland DA - 2010-06-15 KW - Deflagration KW - Detonation KW - Mikroreaktionstechnik KW - Mikroreaktor KW - Sicherheitstechnik PY - 2010 SN - 978-3-9813550-1-7 SN - 0938-5533 SP - 7 EP - 10 PB - BAM Bundesanstalt für Materialforschung und -prüfung CY - Berlin AN - OPUS4-21495 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gödde, M. A1 - Liebner, Christian A1 - Hieronymus, Hartmut T1 - Sicherheit in der Mikroreaktionstechnik N2 - Die Mikroverfahrenstechnik beschäftigt sich mit Apparaten, deren innere Abmessungen kleiner als ein Millimeter sind. Mikroreaktoren sind zurzeit Gegenstand intensiver Forschungsarbeit. Aus Sicht der chemischen Sicherheitstechnik besteht eines von mehreren Zielen bei der Entwicklung von Mikroreaktoren darin, schwer beherrschbare Reaktionen bei Reaktionsbedingungen zu realisieren, die in konventionellen Chemieanlagen wegen ihrer besonderen Gefährlichkeit nicht mehr beherrscht werden können. Der große spezifische Wärmeaustausch kann das thermische Durchgehen der Reaktion verhindern, die engen Abmessungen können die Ausbreitung von Explosionen unterdrücken. Bei mehrstufigen Synthesen kann die Lagerung giftiger oder zersetzungsfähiger Zwischenprodukte durch unverzügliche weitere Umsetzung in einem folgenden Reaktionsschritt vermieden werden. Der vorliegende Beitrag widmet sich sicherheitstechnischen Aspekten der Mikroverfahrenstechnik. KW - Deflagration KW - Detonation KW - Mikroreaktionstechnik KW - Mikroreaktoren KW - Sicherheitstechnik PY - 2009 DO - https://doi.org/10.1002/cite.200800176 SN - 0009-286X SN - 1522-2640 VL - 81 IS - 1-2 SP - 73 EP - 78 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-19121 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer, J. A1 - Liebner, Christian A1 - Hieronymus, Hartmut A1 - Klemm, A. T1 - Maximum safe diameters of microcapillaries for a stoichiometric ethene/oxygen mixture KW - Combustion KW - Explosions KW - Microstructure KW - Safety KW - Ethene KW - Oxygen PY - 2009 DO - https://doi.org/10.1016/j.ces.2009.03.038 SN - 0009-2509 VL - 64 IS - 12 SP - 2951 EP - 2956 PB - Elsevier CY - Amsterdam AN - OPUS4-19446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Hieronymus, Hartmut A1 - Klemm, E. A1 - Fischer, J. T1 - Maximum safe diameters of micro capillaries in ethyleneoxide process T2 - 6th World Congress on Oxidation Catalysis CY - Lille, France DA - 2009-07-05 PY - 2009 AN - OPUS4-20009 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Hieronymus, Hartmut A1 - Fischer, J. A1 - Klemm, E. T1 - Are microreaction devices inherently safe? An investigation on gas phase explosion propagation limits T2 - 13th International Symposium on Loss Prevention and Safety Promotion in the Process Industries CY - Bruges, Belgium DA - 2010-06-06 PY - 2010 AN - OPUS4-21391 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kluge, Martin A1 - Kreißig, Michael A1 - Liebner, Christian A1 - Spoormaker, Tom ED - DeRademacher, E. ED - Schmelzer, P. T1 - Identifying hazardous conditions for rapid compression scenarios of chemically unstable gases in industrial scaled pipes N2 - The polymeric industry handles Tetrafluoroethylene (TFE) as basic material for polymer (PTFE) and co-polymer (PCTFE) production. As a chemically unstable gas, it can react in an explosive way, without the presence of any other gases. Once initiated such an exothermic reaction can propagate through the pipe system of a plant and might lead to massive damages and/or fatalities. Especially after maintenance parts of the pipe systems can be filled with TFE, nitrogen or air at pressures up to atmospheric conditions whereas connected parts of pipes might still contain TFE at operating pressure state. Many of the regarding pipes are separated by ball valves, which allow a fast opening procedure. Thereby fast compression of the gas can occur and lead to a massive temperature increase which might induce unwanted reactions. Former tests in laboratory scale described by Meyer (2009) allowed an ignition of a TFE/air system by rapid compression only for a set of sharp defined boundary conditions. First tests in the lower industrial scale were done by Ferrero et al. (2013), where an ignition at typical industrial operating conditions was initiated. The results of the tests indicated that the critical achievable compression temperatures strongly depend on the setup and therefore on the pipe diameter as well. Therefore the necessity of further tests has been pointed out. The original setup presented by Ferrero (2013), which represents the smallest typical industrial size with an inner diameter of 1.125”, was modified to withstand an explosive decomposition reaction and to avoid a deflagration to detonation transition. Different safety concepts as burst discs and time controlled cut-off valves had been tested and evaluated to optimize the experimental setup for reproducible test conditions. This allowed the systematic investigation of the rapid compression of TFE–systems for the first time in the described scale without serious damages after an ignition. In the donor pipe always TFE at high pressure and in the receiving pipe TFE, nitrogen or air were present at an absolute pressure ranging from 500 Pa to atmospheric pressure. The scope was to generate a “hazard diagram” in which the ignition probability in dependence of donor (high) pressure and the receiving (low) pressure is shown. Hazardous conditions can easily be determined. A reference method for the maximum achievable temperatures of non-reacting gas systems was created using an air/air-system. Thus reactive TFE-systems could be evaluated regarding additional exothermic effects. The final hazard diagram demonstrates that there is no sharp limit between a “safe” state and an “ignition” for a TFE/air-system. Rather a transition range exists, which decreases with rising donor pressure. An increased temperature in this range, sometimes combined with small pressure peaks in the profile, indicates first partial restricted reactions near the end flange. The more it gets closer to the “ignition” transition the more traces like soot or undefined solid fractions were found. A TFE/nitrogen- and a TFE/TFE-system could not be ignited at all. A description of the experimental tests as well as a detailed explanation of the hazard diagram will be presented. T2 - 15th International Symposium on Loss Prevention and Safety Promotion in the Process Industries and accompanying exhibition CY - Freiburg, Germany DA - 05.06.2016 KW - explosion KW - adiabatic compression KW - self ignition KW - plant safety KW - decomposable gas KW - fire PY - 2016 SN - 978-88-95608-39-6 DO - https://doi.org/10.3303/CET1648102 SN - 2283-9216 VL - 48 SP - 607 EP - 612 PB - AIDIC Servizi S.r.l. CY - Milano, Italy AN - OPUS4-37917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kluge, Martin A1 - Kreißig, Michael A1 - Liebner, Christian A1 - Spoormaker, T. T1 - Identifizierung von sicherheitstechnisch gefährlichen Bedingungen für schlagartige Kompressionsvorgänge chemisch instabiler Gase im industriellen Maßstab N2 - Tetrafluorethen wird von der Polymerindustrie seit Jahrzenten als monomeres Ausgangsmaterial sowohl für die Herstellung von Polymeren (PTFE) als auch für Kopolymere (PCTFE) eingesetzt. Aufgrund seiner Eigenschaft als chemisch instabiles Gas kann TFE auch ohne Luftsauerstoff oder einen anderen Oxydator explosionsartig zerfallen. Nach der Initiierung des Zerfalls kann dieser unter bestimmten Bedingungen aufgrund des exothermen Reaktionsverhaltens sich selbstständig in Apparaten und Rohrleitungen ausbreiten. Dies geht aufgrund der freigesetzten Reaktionsenthalpie mit einem schlagartigen Anstieg von Druck und Temperatur einher, was zu erheblichen Belastungen der Materialien bis hin zum Versagen und Bruch und möglichen Folgeschäden einschließlich Personenschäden führen kann und in der Vergangenheit bereits mehrfach geführt hat. Besonders nach Wartungsarbeiten besteht die Gefahr, dass Teilabschnitte im Rohrleitungssystem mit TFE, Stickstoff oder Luft gefüllt sind mit Drücken in einem Bereich zwischen technischem Vakuum und atmosphärischem Druck wohingegen angrenzende Rohrabschnitte oder Behälter immer noch TFE bei Betriebsdrücken bis 32 bar enthalten können. Dabei sind die Abschnitte in der Praxis häufig durch Kugelhähne voneinander getrennt, die aufgrund ihrer Öffnungscharakteristik bereits bei geringen Betätigungswinkeln eine große Querschnittsfreigabe für die Strömung im Rohr ermöglichen. Dadurch können schlagartige Kompressionsvorgänge des Gases im Niederdruckbereich ermöglicht werden, die allein aufgrund der thermodynamischen Zustandsänderung zu einer erheblichen Temperaturerhöhung führen und im schlimmsten Fall zur Initiierung der Zerfallsreaktion führen können. Es wird erstmalig ein Versuchsaufbau im Industriemaßstab, der einer explosionsartigen Zerfallsreaktion von TFE standhalten kann. Zahlreiche Sicherheitskonzepte einschließlich diverser Berstscheibenkonfigurationen als auch zeitgesteuerte Schnellschlussventile wurden eingehend untersucht und bewertet, um die optimale Versuchskonfiguration für bestmögliche Reproduzierbarkeit festzulegen. Es fand eine systematische Untersuchung der schlagartigen Kompression der Systeme Luft/Luft, TFE/Luft, TFE/TFE und TFE/N2 statt. In der Hochdrucksektion wurden Drücke bis 30 bar realisiert und im Niederdrucksektor konnten Anfangsdrücke im Bereich weniger Millibar bis hin zu Atmosphärendruck eingestellt werden. Als Hauptergebnis wurde ein „Hazard diagram" erstellt, mit dessen Hilfe die Zündwahrscheinlichkeit in Abhängigkeit vom Hochdruck und Niederdruck abgeschätzt werden kann. Gefährliche Bedingungen in Rohrleitungen können dadurch auf einfachem Weg identifiziert werden. Als Referenzsystem zur Beurteilung der maximal erreichbaren nicht reaktiven Kompressionstemperaturen wurde Luft/Luft verwendet. Die damit ermittelten Daten dienten zur Bewertung von zusätzlichen exothermen Effekten, wie sie etwa bei Vorreaktion des TFE im Falle einer Dimerisierung auftreten können. Entgegen der ursprünglichen Annahme konnten die Systeme TFE/Stickstoff und TFE/TFE im verwendeten Aufbau nicht durch Kompressionsvorgänge gezündet werden. T2 - 12. Fachtagung Anlagen-, Arbeits- und Umweltsicherheit CY - Köthen, Germany DA - 05.11.2015 KW - Tetrafluoroethen KW - Zerfall KW - Selbstentzündung KW - Adiabate Kompression PY - 2015 SN - 978-3-86011-091-1 SP - 1 EP - 10 AN - OPUS4-34852 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Balcazar Pust, Emilio A1 - Neher, F. A1 - Liebner, Christian A1 - Hieronymus, Hartmut A1 - Klemm, E. T1 - Determination of ignition temperature in micro reactors N2 - Explosion protection of oxidation reactions in micro reactors was investigated. Lange et al. (2014) reported on the possibilities of operating oxidation reactions in catalyst coated micro reactors within the explosion regime, but also warned about hotspot induced thermal runaway and detonation ignition at certain conditions. Methane and ethene, representing the explosion groups IIA1 and IIB (DIN EN ISO 16852), were used in stoichiometric oxygen mixtures with respect to total oxidation, which represents the worst case scenario in terms of safety assessment. Using laser radiation on a ceramic target inside of the micro channel, an artificial, controllable hotspot was generated. The ignition temperatures of fuel gas/oxygen mixtures inside a micro reactor were measured and their dependencies on initial pressure, initial temperature, volumetric flow rate, and micro channel height were examined. Deflagration reactions prior to the detonation were observed for the first time inside a micro reactor. KW - Explosion safety KW - Explosionsschutz KW - Zündtemperatur KW - Mikroverfahrenstechnik KW - Thermisches Durchgehen KW - Micro process engineering KW - Autoignition temperature KW - Hotspot KW - Thermal Runaway PY - 2016 DO - https://doi.org/10.3303/CET1648092 SN - 2283-9216 SN - 1974-9791 VL - 48 SP - 547 EP - 552 PB - AIDIC CY - Milano AN - OPUS4-34164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liebner, Christian A1 - Shenton, M. T1 - Identifying hazardous conditions for compression heat igniting the chemically unstable gas Tetrafluoroetyhlene in industrial scale N2 - Tetrafluoroethylene (TFE) is an industrial scale starting material e.g. for polymer production (PTFE, FEP). When ignited the chemically unstable TFE is capable of decomposing in an explosive way. Explosion propagation through pipe systems of production plants have led to damage and fatalities within the last seven decades. Incident analyses identified compression heat a relevant source of ignition. Chemical plants consist of pipes, vessels, separating valves, strainers and other components. Before restarting the process after maintenance work, different parts of the plant components could be filled with TFE, nitrogen or air at different initial pressures ranging from vacuum or atmospheric to TFE at operating pressure. Valve opening procedures may cause a temperature increase in the gas phase. Compression takes place at polytropic conditions. Heat losses cannot be neglected. The temperature development in the gas depends upon the surface to volume ratio of the enclosure, geometrical influences, the state of gas flow, how fast the valve opens, and the heat capacity of the gas being compressed. Laboratory scale tests (Meyer, 2009) revealed ignition of TFE/air due to compression heat. Tests in pipes of 28 mm inner diameter, i.e. already industrial scale, were performed by (Kluge et. al., 2016). In the present contribution initial test results from a 63 mm pipe will be compared with existing 28 mm pipe data. A description of the experimental setup as well as an explanation of the hazard diagram will be given. Furthermore, a method allowing for the identification of hazardous conditions will be discussed. T2 - Konferenz LossPrevention 20149 CY - Delft, Netherlands DA - 16.06.2019 KW - Tetrafluoroethylene KW - Explosion KW - Safety PY - 2019 UR - https://www.aidic.it/cet/19/77/000.html SN - 978-88-95608-74-7 DO - https://doi.org/10.3303/CET1977026 SN - 2283-9216 VL - 77 SP - 151 EP - 156 PB - AIDIC - Associazione Italiana di Ingegneria Chimica CY - Milano AN - OPUS4-49564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liebner, Christian A1 - Shenton, M. T1 - Identifiying hazardous conditions for compression heat igniting the chemically unstable gas Tetrafluorethylene in industrial scale N2 - Tetrafluoroethylene (TFE) is an industrial scale starting material e.g. for polymer production (PTFE, FEP). When ignited the chemically unstable TFE is capable to decompose in an explosive way. Explosion propagation through pipe systems of production plants have led to damage and fatalities within the last 7 decades. Incident analyses identified compression heat a relevant source of ignition. Chemical plants consist of pipes, vessels, separating valves, strainers and other components. Before restarting the process after maintenance work different parts of the plant components could be filled with TFE, Nitrogen or Air at different initial pressures ranging from vacuum or atmospheric to TFE at operating pressure. Valve opening procedures may cause a temperature increase in the gas phase. Compression takes place at polytropic conditions. Heat losses cannot be neglected. Therefore the temperature development in the gas depends upon the surface-to-volume-ratio of the enclosure, geometrical influences, the state of gas flow, how fast the valve opens and the heat capacity of the gas being compressed. In the present work initial test results from a 2.5” pipe will be compared with existing 1.1” pipe data. Geometrical effects will be briefly discussed as well as some first results concerning the influence of orifices are reported. Furthermore a method allowing for the identification of hazardous initial conditions is discussed. T2 - 16th International Symposium on Loss Prevention and Safety Promotions in the Process Industires and accompanying exhibition CY - Delft, The Netherlands DA - 16.06.2019 KW - Tetrafluorethylene KW - Explosion KW - Safety PY - 2019 AN - OPUS4-48324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tschirschwitz, Rico A1 - Bernardy, Christopher A1 - Wagner, Patrick A1 - Rappsilber, Tim A1 - Liebner, Christian A1 - Hahn, S.-K. A1 - Krause, U. T1 - Harmful effects of lithium-ion battery thermal runaway: scale-up tests from cell to second-life modules N2 - For a comprehensive safety assessment of stationary lithium-ion-battery applications, it is necessary to better understand the consequences of thermal runaway (TR). In this study, experimental tests comprising twelve TR experiments including four single-cell tests, two cell stack tests and six second-life module tests (2.65 kW h and 6.85 kW h) with an NMC-cathode under similar initial conditions were conducted. The temperature (direct at cells/modules and in near field), mass loss, cell/module voltage, and qualitative vent gas composition (Fourier transform infrared (FTIR) and diode laser spectroscopy (DLS) for HF) were measured. The results of the tests showed that the battery TR is accompanied by severe and in some cases violent chemical reactions. In most cases, TR was not accompanied by pregassing of the modules. Jet flames up to a length of 5 m and fragment throwing to distances to more than 30 m were detected. The TR of the tested modules was accompanied by significant mass loss of up to 82%. The maximum HF concentration measured was 76 ppm, whereby the measured HF concentrations in the module tests were not necessarily higher than that in the cell stack tests. Subsequently, an explosion of the released vent gas occurred in one of the tests, resulting in the intensification of the negative consequences. According to the evaluation of the gas measurements with regard to toxicity base on the “Acute Exposure Guideline Levels” (AEGL), there is some concern with regards to CO, which may be equally as important to consider as the release of HF. KW - Large-scale tests KW - Lithium-ion battery KW - Gas emission KW - Thermal runaway KW - Consequences PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579054 DO - https://doi.org/10.1039/D3RA02881J SN - 2046-2069 VL - 13 IS - 30 SP - 20761 EP - 20779 PB - Royal Society of Chemistry (RSC) CY - Cambridge, UK AN - OPUS4-57905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -