TY - JOUR A1 - Hahn, S.-K. A1 - Rost, M. A1 - Kusche, Christian A1 - Knaust, Christian A1 - Krause, U. T1 - Dokumentation der Entwicklung des m-Faktors und neuer Aspekt der Verbrennungseffizienz T1 - Structural fire protection in industrial buildings - development of the m-factor and new aspect of the combustion efficiency N2 - Vor dem Hintergrund der Zurückziehung der DIN 18230 Teil 2 zur Bestimmung des m-Faktors von Materialien für die Brandlastbewertung im Industriebau müssen neue Wege gefunden werden, wie das Abbrandverhalten alternativ quantifiziert werden kann. Der Beitrag fasst die Entstehung und die Entwicklung der Bestimmungsweise von Abbrandfaktoren zusammen und gibt Ausblick auf eine neue Möglichkeit zur Bewertung von Brandlasten, die Verbrennungseffizienz. KW - Abbrandfaktor KW - DIN 18230 KW - Indrustriebau KW - Brandschutz im Brandlast KW - Verbrennungseffizienz PY - 2017 U6 - https://doi.org/10.1002/bate.201700020 SN - 0932-8351 SN - 1437-0999 VL - 94 IS - 6 SP - 337 EP - 343 PB - Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG CY - Berlin AN - OPUS4-40962 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knaust, Christian T1 - Modellierung von Tunnelbränden T1 - Modeling tunnel fires – Coupling of fluid and structure N2 - Heute verfügbare Technik ermöglicht es, die Wärmetransportmechanismen im Brand, an der Bauteiloberfläche und im Bauteil mittels CFD zu koppeln. Die Kopplung von Fluid und Struktur wurde am Beispiel eines 100-MW-Tunnelbrands mit CFD (Computational Fluid Dynamics) untersucht. Die instationären Berechnungen wurden mit dem CFD-Programm ANSYS Fluent durchgeführt. Der infolge eines Lkw-Unfalls verursachte n-Heptan-(C7H16)-Brand wurde mit dem Eddy-Dissipation-Verbrennungsmodell modelliert. Das Fluid- und Solid-Gebiet wurden durch ein ‚Interface‘ gekoppelt. Die instationäre Wärmeleitung des Bauteils mit einer Höhe von 0,4 m wurde mit der dreidimensionalen Fourier´schen Wärmeleitungsgleichung modelliert und das instationäre thermische Verhalten des quarzhaltigen Betonbauteils analysiert. Temperaturabhängige Stoffkennwerte wurden berücksichtigt. N2 - The current technology allows the coupling of the temperaturedependent heat transfer mechanisms in case of fire within the structural components and at their surface by means of computational fluid dynamics (CFD). In this paper the thermal coupling of a fluid and a solid region in case of a 100 MW tunnel fire caused by a truck was carried out with CFD. The transient fire simulations were performed with the CFD program ANSYS Fluent. The fire was modeled by the combustion of n-heptane (C7H16) using the eddy dissipation model. The fluid and the solid region were coupled by an interface. The unsteady heat conduction for the 0.4 m thick concrete structure is modeled by using the Fourier heat transfer equation. The transient thermal behavior of quartz containing concrete component was analyzed. Temperature-dependent material properties were considered. KW - Wärmeleitung KW - Berechnungen analytische und empirische KW - ANSYS Fluent KW - Radiation KW - Computational fluid dynamics KW - Temperature dependent properties KW - Analytical and empirical calculations KW - Wärmeübertragung KW - Strahlung KW - Temperaturabhängige KW - Heat transfer KW - Conduction PY - 2016 U6 - https://doi.org/10.1002/bate.201600045 SN - 0932-8351 SN - 1437-0999 VL - 93 IS - 8 SP - 543 EP - 554 PB - Ernst & Sohn Verlag für Architektur und technische Wissenschaften CY - Berlin AN - OPUS4-37211 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kaudelka, Sven A1 - Knaust, Christian A1 - Krause, U. T1 - Ansätze zur numerischen Berechnung von Brandeinwirkungen auf Bauteile N2 - Bei der Erstellung von brandschutztechnischen Nachweisen für Industriebauten werden häufig Ingenieurmethoden des Brandschutzes genutzt. Dazu zählen die Modellierung und Berechnung von Brandszenarien mittels numerischer Strömungsmechanik (computational fluid dynamics, CFD). In dieser Arbeit wurde ein auf numerischer Strömungs- und Strukturmechanik basierendes Verfahren zur brandschutztechnischen Bemessung von Bauteilen am Beispiel einer Industriehalle angewendet. Instationäre Temperaturverläufe aus der Heißgasschicht dienten dabei als Eingangswerte für die Bauteilberechnung. Aus den Ergebnissen wurde die äquivalente Branddauer berechnet, mit der die rechnerisch erforderlichen Feuerwiderstandsdauern der Bauteile bestimmt werden konnte. KW - Äquivalente Branddauer KW - Brandschutz im Industriebau KW - Feuerwiderstandsdauer KW - Numerische Strömungsmechanik KW - Numerische Strukturmechanik PY - 2016 U6 - https://doi.org/10.1002/cite.201500174 SN - 1522-2640 SN - 0009-286X VL - 88 IS - 8 SP - 1157 EP - 1168 PB - Wiley CY - Weinheim AN - OPUS4-38179 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -