TY - CONF A1 - Dietrich, Matthes A1 - Knaust, Christian A1 - Arnold, L. A1 - Brüne, M. A1 - Festag, S. T1 - Buoyancy driven flow in an underground metro station for different climate conditions – experimental and numerical investigation N2 - In urban areas the demand for public transportation is constantly growing. Underground railway systems overcome the problem of limited space on the ground and are therefore one of the most powerful systems in urban public transportation. These facilities can be very complex and are used by a large amount of passengers. Therefore, it is important to maintain the safety for people and buildings. Especially in the case of fire or arson attack. This paper focusses on a fire scenario in a complex subway station for different weather conditions. The purpose is to identify the influences of different weather conditions on the smoke spread and the ability of self-rescue in case of a burning luggage. The evaluation of the fire simulations will focus on toxicity and visibility taking into account the FED concept. T2 - AUBE '17 & SUPDET 2017 CY - Washington D.C., USA DA - 12.09.2017 KW - Fire simulations KW - Weather conditions KW - FED PY - 2017 SN - 978-3-940402-11-0 VL - 2 SP - II-121 EP - II-128 AN - OPUS4-42253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Knaust, Christian A1 - Amecke-Mönninghoff, Stephan T1 - Entwicklung eines Verfahrens zur Brandlastberechnung unter Anwendung der Verbrennungseffektivität und unter Berücksichtigung des Temperatur-Zeit-Verlaufs im Bauteil N2 - Nach DIN 18230-1 erfolgt in Deutschland die Brandlastberechnungen unter Anwendung des Abbrandfaktors m. Der Abbrandfaktor m ist ein dimensionsloser Beiwert mit dem die Brandlast aus einem Stoff oder Stoffgemisch bewertet wird. Neben dem Brandverhalten des Stoffes berücksichtigt er das Temperatur-Zeit-Verhalten im Bauteil. Die einzige Prüfapparatur, mit der Abbrandfaktoren bestimmt wurden, ist jedoch nicht mehr existent. Ein Wiederaufbau der abgeschafften Prüfapparatur wurde wegen apparateabhängigen Messunsicherheiten und auch aus wirtschaftlichen Gründen als nicht sinnvoll angesehen. Die Erarbeitung eines äquivalenten Verfahrens zum Abbrandfaktor m unter Verwendung der Verbrennungseffektivität und unter Berücksichtigung der Bauteilerwärmung war daher Gegenstand dieses Forschungsvorhabens. Ziel war es für Brandlastberechnungen nach DIN 18230-1 die Verbrennungseffektivität anzuwenden. Die Verbrennungseffektivität beschreibet jedoch nur den verringerten Energieumsatz von Stoffen im Brandraum. Es wurde daher ein Verfahren erarbeitet, dass ergänzend zur Brandlastberechnung unter Anwendung der Verbrennungseffektivität das Temperatur-Zeit-Verhalten in einem brandbelastenden Bauteil berücksichtigt. KW - Rechenmodelle KW - Ansys CFX KW - FDS KW - Computational fluid dynamics KW - CFD KW - Rauchausbreitung KW - Validierung KW - U-Bahn KW - Brandszenarien KW - Modellierung von Bränden PY - 2017 SN - 978-3-8167-9928-3 VL - F 3001 SP - 1 EP - 53 PB - Fraunhofer IRB Verlag CY - Stuttgart AN - OPUS4-39667 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kusche, Christian A1 - Knaust, Christian A1 - Krause, U. T1 - Ermittlung von Verbrennungseffizienzen für Feststoffe N2 - Brandlasten stellen eine Gefahr für den Menschen sowie für das industrielle Gebäude dar, in dem sie gelagert sind. Das Brandverhalten der Brandlasten bestimmt dabei maßgeblich die Schwere der Gefahr. Brandschutzmaßnahmen dienen dazu, im Brandfall das Schadensausmaß zu minimieren. Um geeignete Brandschutzmaßnahmen ableiten zu können, ist es erforderlich, das Brandverhalten der Materialien zu bewerten. Eine international angewandte Möglichkeit zur Bewertung des Brandverhaltens von Feststoffen und Flüssigkeiten ist die Verbrennungseffizienz χ. Sie ist das Verhältnis der während einer Verbrennung effektiv freigesetzten Wärme (effektive Verbrennungswärme) zu der maximal möglichen Wärmemenge (Heizwert). Die Grundlage zur Bestimmung von Verbrennungseffizienzen stellen die Wärmefreisetzungsrate (HRR) und die Massenverlustrate (MLR) dar. Ein standardisiertes Bestimmungsverfahren existiert nicht. So liegt es in dem Ermessen des Anwenders, in welcher Prüfapparatur die Experimente durchgeführt werden und welcher Zeitbereich der HRR und der MLR zur Berechnung der Verbrennungseffizienz verwendet wird. Im Rahmen dieser Arbeit wurden Versuche im Cone Calorimeter und im Single Burning Item test anhand von hölzernen Materialien durchgeführt. Die Ergebnisse zeigen auf, dass sich in Abhängigkeit von der verwendeten Prüfapparatur und in Abhängigkeit des für die Berechnung betrachten Versuchszeitraumes verschiedene Werte der Verbrennungseffizienz ergeben. Auf Grundlage dieser Erkenntnisse wurde eine Methode entwickelt, mit der reproduzierbare Werte berechnet werden können. Dabei erfolgt die Berechnung lediglich für die Vollbrandphase. Diese Brandphase stellt die Hauptbrandphase dar und ist durch eine gleichmäßige Verbrennung mit wenigen Änderungen in der Branddynamik gekennzeichnet. T2 - 5. Magdeburger Brand- und Explosionsschutztage 2017 CY - Magdeburg, Germany DA - 23.03.2017 KW - Verbrennungseffizienzen KW - Rechenmodelle KW - Cone Calorimeter KW - Single Burning Item test KW - Brandverhalten KW - Modellierung von Bränden KW - Rauchausbreitung KW - Validierung KW - Brandlastberechnung PY - 2017 SN - 978-3-00-056201-3 U6 - https://doi.org/10.978.300/0562013 SP - 1 EP - 13 PB - Otto-von-Guericke-Universität Magdeburg CY - Magdeburg AN - OPUS4-40047 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Knaust, Christian A1 - Festag, S. A1 - Brüne, M. A1 - Dietrich, Matthes A1 - Amecke-Mönninghoff, Stephan A1 - Konrath, B. A1 - Arnold, L. T1 - Modellierung eines Brandes in einer U-Bahn-Station: Validierung von Rechenmodellen auf der Grundlage von Feldversuchen N2 - Mittels Propan-Brennern mit einer Brennerleistung 750 kW wurden in einer U-Bahn-Station Heißgasversuche durchgeführt und die zeitlichen und örtlichen Verteilungen der physikalischen Größen (Stoffkonzentration, Temperatur und Rauchgasdichte) erfasst. Laborversuche sowie die Feldversuche sind Validierungsgrundlage für ANSYS CFX und FDS und die später im Rechenmodell der U-Bahn-Station zur Untersuchung der Grundströmung und Rauchausbreitung verwendeten mathematisch-physikalischen Modelle. Der Aufsatz stellt das Projekt ORPHEUS vor und diskutiert die ersten Ergebnisse. T2 - Magdeburger Brand- und Explosionsschutztage 2017 CY - Magdeburg, Germany DA - 23.03.2017 KW - Rechenmodelle KW - Ansys CFX KW - FDS KW - Computational fluid dynamics KW - CFD KW - Rauchausbreitung KW - Validierung KW - U-Bahn KW - Brandszenarien KW - Modellierung von Bränden PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-396694 SN - 978-3-00-056201-3 SP - 1 EP - 12 PB - Otto-von-Guericke-Universität Magdeburg CY - Magdeburg AN - OPUS4-39669 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chaves Spoglianti de Souza, Roberto A1 - Rosignuolo, Francesco A1 - Andreini, M. A1 - La Mendola, S. A1 - Knaust, Christian T1 - Probabilistic Thermo-Mechanical Analysis of a Concrete Tunnel Lining Subject to Fire N2 - Probabilistic thermo-Mechanical analysis of a concrete tunnel lining subject to fire The probability distributions of the parameters related to the thermal analysis was considered in order to study the variability of the results and to carry out a reliability analysis. This assessment considered as random variables the thermo-mechanical properties of the concrete, the maximum heat release rate (HRR), the duration of the period of maximum HRR, the convective coefficient, the emissivity at the surface exposed to the fire, the air velocity within the tunnel, and the initial fire radius. The temperature-time curve was described by a correlation. An experimental design based on a Latin Hypercube Sampling algorithm was performed to define the input parameters to each analysis case. The definition of a limit state function based on the punctual strain status has permitted to carry out a reliability analysis. T2 - IFireSS 2017 – 2nd International Fire Safety Symposium CY - Naples, Italy DA - 07.06.2017 KW - Probabilistic Analysis KW - Latin Hypercube KW - Tunnel KW - Fire KW - Concrete PY - 2017 SN - 978-88-89972-67-0 SN - 2412-2629 SP - 997 EP - 1004 PB - Doppiavoce CY - Naples, Italy AN - OPUS4-40652 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Souza, Roberto A1 - Knaust, Christian A1 - Andreini, M. A1 - La Mendola, S. T1 - Probability Distribution Sensitivity on the Thermo-Mechanical FEM of a Concrete Tunnel Exposed to Fire N2 - A probabilistic approach for finite element analysis (FEA) for tunnel linings exposed to the nominal fire is presented. The probabilistic FEA accounted for the uncertainties distributions tied to the conductivity and specific heat as well as of the compressive strength, tensile strength, Young’s modulus, and ultimate strain in compression. To get an understanding on the influence of different probability density functions on the distribution of maximum displacements of the tunnel lining, a sensitivity analysis was performed. Four sets of FEAs were carried out with different probability distributions of the conductivity, the specific heat, and the compressive strength of the concrete, respectively. An experimental design based on a Latin Hypercube Sampling algorithm was performed to define the input parameters which describe each analysis case. A reliability analysis was executed considering a limit state function based on the temperature-dependent ultimate strain. The results show that, depending on the distribution adopted, the standard deviation of the maximum displacements can vary up to 47,4% of the minimum standard deviation. The large standard deviation is associated with the possibility of a greater displacement and, hence, to a structure more vulnerable to fire. T2 - 4th Symposium Structural Fire Engineering Braunschweig CY - Brunswick, Germany DA - 12.09.2017 KW - Probabilistic analysis KW - Fire KW - Concrete KW - Finite elements analysis PY - 2017 SP - 1 EP - 13 AN - OPUS4-42681 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -