TY - JOUR A1 - Lerena, P. A1 - Auerkari, Pertti A1 - Knaust, Christian A1 - Vela-Wallenschus, Iris A1 - Krause, U. T1 - Approaches towards a generic methodology for storage of hazardous energy carriers and waste products JF - Journal of risk research N2 - Energy carriers – either conventional or 'new' ones – have to be provided in large amounts to meet the requirements of permanent availability and reliable supply of electricity. Depending on their state of aggregation, energy carriers are either stored in large masses (if solid or liquid) or at elevated pressures (if gaseous). Both impose the hazard of large-scale fire, in the latter case additionally the danger of explosion or unintended release. Very similar hazards occur for wastes. Solid wastes are present in large masses and only a small part is recycled. Most of the solid wastes are used in energy conversion. The main gaseous waste is CO2. During capturing also the hazard of unintended release exists. In this article, existing approaches for safe storage and fire prevention are discussed and a generic methodology is outlined. This methodology consists of the following steps: • gaining knowledge about the behaviour of the material stored (reactivity, thermal stability, etc.), • assessing the environmental conditions for the storage site (neighbourhood, safety distances, etc.), • assessment of prospective consequences of an incident and • development of individual loss prevention conceptions. All steps require both experimental testing and theoretical considerations about accident scenarios as integral parts of the methodology. KW - Storage KW - Hazardous materials KW - Energy carriers PY - 2013 DO - https://doi.org/10.1080/13669877.2012.729524 SN - 1366-9877 SN - 1466-4461 N1 - Geburtsname von Vela-Wallenschus, Iris: Vela, I. - Birth name of Vela-Wallenschus, Iris: Vela, I. VL - 16 IS - 3-4 SP - 433 EP - 445 PB - Taylor & Francis CY - London [u.a.] AN - OPUS4-26882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Löhnert, Andrea A1 - Monreal, Nils A1 - Knaust, Christian A1 - Hofmann-Böllinghaus, Anja A1 - Krause, U. T1 - CFD modeling approach of smoke toxicity and opacity for flaming and non-flaming combustion processes JF - Fire and Materials N2 - Current engineer’s methods of fire safety design include various approaches to calculate the fire Propagation and smoke spread in buildings by means of computational fluid dynamics (CFD). Because of the increased computational capacity, CFD is commonly used for prediction of time-dependent safety parameters such as critical temperature, smoke layer height, rescue times, distributions of chemical products, and smoke toxicity and visibility. The analysis of smoke components with CFD is particularly complex, because the composition of the fire gases and also the smoke quantities depends on material properties and also on ambient and burning conditions. Oxygen concentrations and the temperature distribution in the compartment affect smoke production and smoke gas toxicity qualitatively and quantitatively. For safety designs, it can be necessary to take these influences into account. Current smoke models in CFD often use a constant smoke yield that does not vary with different fire conditions. If smoke gas toxicity is considered, a simple approach with the focus on carbon monoxide is often used. On the basis of a large set of experimental data, a numerical smoke model has been developed. The developed numerical smoke model includes optical properties, production, and toxic potential of smoke under different conditions. For the setup of the numerical model, experimental data were used for calculation of chemical components and evaluation of smoke toxicity under different combustion conditions. Therefore, averaged reaction equations were developed from experimental measurements and implemented in ANSYS CFX 14.0. KW - Fire modeling KW - Fire safety KW - Computational fluid dynamics (CFD) KW - Smoke toxicity PY - 2016 DO - https://doi.org/10.1002/fam.2340 SN - 1099-1018 VL - 40 IS - 6 SP - 759 EP - 772 PB - Wiley CY - West Sussex, UK AN - OPUS4-37514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kusche, Christian A1 - Knaust, Christian A1 - Hahn, S.-K. A1 - Krause, U. T1 - Experimental investigations of the combustion efficiency for fire load calculations T1 - Experimetelle Untersuchungen der Verbrennungseffektivität für Brandlastberechnungen JF - Materials Testing N2 - The amount of heat, which is released by fire loads during the combustion process, depends on the material characteristics, the ventilation conditions, the storage density and the distribution. To evaluate the structural stability of buildings in case of fire, the fire load has to be quantified. In Germany, the fire load is quantified by using the combustion factor m, while internationally the combustion efficiency χ is applied. Both factors assess the burning behavior of materials, but the determination is carried out in different ways. Since the testing facility was abolished fifteen years ago, it is not possible to determine the combustion factor m anymore. So, it should be found out, if the combustion efficiency χ is a convenient method to quantify the fire load under the consideration of the German standards. As a part of the research, combustion efficiencies χ were determined for eight materials in the cone calorimeter and the single burning item test at different heat fluxes. The values of the combustion efficiencies χ as well as the corresponding combustion factors m were discussed and compared to the values of the literature. The results show an influence of the testing facility on the combustion efficiency. The values of the combustion efficiency determined in the single burning item test were higher than the values from the cone calorimeter. N2 - Die Wärmefreisetzung einer Brandlast im Brandfall hängt von den Materialeigenschaften, den Ventilationsbedingungen, der Lagerungsdichte und der Verteilung im Brandraum ab. Die Festlegung der erforderlichen Feuerwiderstandsdauer in industriellen Gebäuden erfolgt auf Basis der Brandlast. In Deutschland dient der Abbrandfaktor m (m-Faktor) zur Berechnung der Brandlast, wohingegen international die Verbrennungseffektivität χ zur Berechnung verwendet wird. Zwar charakterisieren beide Faktoren das Abbrandverhalten von Stoffen, jedoch sind ihre Bestimmungsmethoden unterschiedlich. Seit der Abschaffung des letzten m-Faktor-Ofens vor mehr als 15 Jahren, ist die Bestimmung von m-Faktoren nicht mehr möglich. Daher soll untersucht werden, ob die Verbrennungseffektivität χ an Stelle des m-Faktors zur Berechnung der Brandlast im Rahmen deutscher Normen verwendet werden kann. Für diese Untersuchungen wurde die Verbrennungseffektivität χ von acht Stoffen im Cone Calorimeter und im Single Burning Item Test bei unterschiedlichen Wärmestromdichten bestimmt. Die ermittelten Werte der Verbrennungseffektivität χ wurden den bestehenden m-Faktoren gegenübergestellt und mit Werten aus der Literatur verglichen. Die Untersuchungen haben ergeben, dass die Prüfapparaturen zu unterschiedlichen Verbrennungseffektivitäten führen. Die Werte aus der Messung des SBI waren höher als die des Cone Calorimeters KW - Combustion efficiency KW - Combustion factor KW - Fire load density KW - Cone calorimeter KW - Single burning item test PY - 2015 DO - https://doi.org/10.3139/120.110795 SN - 0025-5300 VL - 57 IS - 10 SP - 843 EP - 849 PB - Carl Hanser Verlag CY - München AN - OPUS4-38738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Krause, U. A1 - Rabe, Frederik A1 - Knaust, Christian ED - Schmidt, J. T1 - Modeling fire scenarios and smoke migration in structures T2 - Process and plant safety: applying computational fluid dynamics KW - Modeling fire scenarios KW - Field models KW - Fire dynamics simulator (FDS) KW - ANSYS CFX PY - 2012 SN - 978-3-527-33027-0 DO - https://doi.org/10.1002/9783527645725.ch10 IS - Chapter 10 SP - 159 EP - 177 PB - Wiley-VCH Verlag GmbH & Co. KGaA AN - OPUS4-27738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Löhnert, Andrea A1 - Rabe, Frederik A1 - Knaust, Christian A1 - Krause, U. T1 - Numerical and experimental investigation of fire smoke toxicity T2 - International congress ' Fire computer modeling' , GIDAI - Fire safety - Research and technology T2 - International congress ' Fire computer modeling' CY - Cantabria, Spain DA - 2012-10-18 PY - 2012 SN - 978-84-86116-69-9 SP - 171 EP - 188 AN - OPUS4-27893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Löhnert, Andrea A1 - Monreal, Nils A1 - Knaust, Christian A1 - Krause, U. ED - Zingoni, A. T1 - Numerical and experimental investigation of the toxicity and light extinction of fire smoke using experimental data from fire tests of polymers T2 - Research and applications in structural engineering, mechanics and computation - 5th International conference on structural engineering, mechanics and computation (Proceedings) N2 - The Fractional Effective Dose model was used to predict the fire smoke toxicity numerically. In this context fire tests were carried out for three different building materials: polyurethane, flame retardant polyurethane and polyvinyl chloride. The fire tests were performed for flaming and smoldering combustion. The aim of the fire tests was to determine the light extinction, the smoke density and the combustion products at varying oxygen concentrations, different temperatures and different irradiance levels. The fire tests were performed in the German DIN-tube and also in the Cone Calorimeter. Stoichiometric coefficients at varying oxygen concentrations and temperatures were determined from measurements. With these stoichiometric coefficients reaction equations were defined and implemented in the Computational Fluid Dynamics (CFD) program, ANSYS CFX. The implemented reaction equations were used to account for different ventilation and temperature conditions in the simulation. The fire and smoke propagation was calculated numerically with CFD in the room corner test geometry. Equations to account for toxicity and light extinction were also implemented and were used to analyse the toxicity and the optical properties of fire smoke with CFD. T2 - Research and applications in structural engineering, mechanics and computation - 5th International conference on structural engineering, mechanics and computation CY - Cape Town, South Africa DA - 02.09.2013 PY - 2013 SN - 978-1-138-00061-2 SN - 978-1-315-85078-8 SP - 2003 EP - 2008 PB - CRC Press AN - OPUS4-29279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -