TY - JOUR A1 - Voigt, Sascha A1 - Sträubig, Felix A1 - Palis, Stephan A1 - Kwade, A. A1 - Knaust, Christian T1 - Experimental comparison of Oxygen Consumption Calorimetry and Sensible Enthalpy Rise Approach for determining the heat release rate of large-scale lithium-ion battery fires N2 - From a fire safety point of view, the burning behavior of lithium-ion batteries is of high interest. The heat release rate (HRR) is the most important fire parameter to analyze the fire hazards of burning objects, so that an accurate determination of it is crucial. In this paper, two different measurement techniques, the Oxygen Consumption Calorimetry (OCC) and the Sensible Enthalpy Rise Approach (SERA) are simultaneously performed in the same calorimeter to measure the HRR of two different types of lithium-ion batteries. HRR values as well as total energies determined by SERA are higher than measured with OCC: The total energy released is about 10–12 times (SERA) and 6–9.5 times (OCC) the electrical stored energy for both battery types, whereas the timescales of the release differ strongly between the types, resulting in maximum HRRs of 3.4 MW (SERA) and 1.5 MW (OCC) for one module of type A and 0.8 MW (SERA) and 0.6 (OCC) of type B respectively. Furthermore, a sensitive dependency of the HRR measurement with SERA on the position of the wall temperature measurement is observed. KW - Fire tests KW - Lithium-ion-batteries KW - Heat release rate KW - Calorimetry KW - Sensible enthalpy rise approach KW - Oxygen consumption calorimetry PY - 2021 U6 - https://doi.org/10.1016/j.firesaf.2021.103447 SN - 0379-7112 IS - 126 PB - Elsevier Ltd. AN - OPUS4-53441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Berchtold, Florian A1 - Knaust, Christian A1 - Rogge, Andreas A1 - Arnold, L. A1 - Thöns, Sebastian ED - Lönnermark, Anders ED - Ingason, Haukur T1 - Risk Analysis for Road Tunnels – A Metamodel to Efficiently Integrate Complex Fire Scenarios N2 - Fires in road tunnels constitute complex scenarios with interactions between the fire, tunnel users and safety measures. More and more methodologies for risk analysis quantify the consequences of these scenarios with complex models. Examples for complex models are the computational fluid dynamics model Fire Dynamics Simulator (FDS) and the microscopic evacuation model FDS+Evac. However, the high computational effort of complex models often limits the number of scenarios in practice. To balance this drawback, the scenarios are often simplified. Accordingly, there is a challenge to consider complex scenarios in risk analysis. To face this challenge, we improved the metamodel used in the methodology for risk analysis presented on ISTSS 2016. In general, a metamodel quickly interpolates the consequences of few scenarios simulated with the complex models to a large number of arbitrary scenarios used in risk analysis. Now, our metamodel consists of the projection array-based design, the moving least squares method, and the prediction interval to quantify the metamodel uncertainty. Additionally, we adapted the projection array-based design in two ways: the focus of the sequential refinement on regions with high metamodel uncertainties; and the combination of two experimental designs for FDS and FDS+Evac. To scrutinise the metamodel, we analysed the effects of three sequential refinement steps on the metamodel itself and on the results of risk analysis. We observed convergence in both after the second step (ten scenarios in FDS, 192 scenarios in FDS+Evac). In comparison to ISTSS 2016, we then ran 20 scenarios in FDS and 800 scenarios in FDS+Evac. Thus, we reduced the number of scenarios remarkably with the improved metamodel. In conclusion, we can now efficiently integrate complex scenarios in risk analysis. We further emphasise that the metamodel is broadly applicable on various experimental or modelling issues in fire safety engineering. T2 - International Symposium on Tunnel Safety and Security CY - Boras, Sweden DA - 14.03.2018 KW - Risk KW - Metamodel KW - CFD KW - Evacuation KW - Uncertainty PY - 2018 SN - 978-91-88695-48-2 VL - 8 SP - 349 EP - 360 AN - OPUS4-44535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Palis, Stephan A1 - Sträubig, Felix A1 - Voigt, Sascha A1 - Knaust, Christian T1 - Experimental investigation of the impact of water mist on high-speed non-premixed horizontal methane jet fires N2 - In this paper, the influence of a fixed water mist firefighting system on a high-speed non-premixed horizontal methane jet fire is investigated with focus on its effect on temperatures and heat load of the jet fire and on ist surroundings. Six tests are performed in which gas is released out of an orifice with a diameter of 1 mm and a release pressure of up to 186 bar. In addition to temperature and radiation measurements, the release pressure, gas mass flow rate and exhaust gas concentrations are detected to determine the heat release. Video and IRanalysis are used to evaluate the interactions between jet fire and water mist. The experiments show, that water mist reduces the temperatures inside the jet fire flow field and its radiative heat flux. It can lower the Risk of ignition of adjacent surfaces and materials, as temperatures fall below autoignition temperatures of common materials like plastics. Although water mist does not extinguish the fire, it has an impact on the energy release by reducing combustion efficiency due to heat exchange with the water mist and oxygen displacement. KW - Fixed firefighting system KW - Jet fire KW - Water mist KW - Fire test KW - Methane KW - Supersonic flow PY - 2020 U6 - https://doi.org/10.1016/j.firesaf.2020.103005 VL - 114 SP - 103005 PB - Elsevier Ltd. AN - OPUS4-50963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voigt, Sascha A1 - Sträubig, Felix A1 - Palis, Stephan A1 - Kwade, A. A1 - Knaust, Christian T1 - CFD-analysis of Sensible Enthalpy Rise Approach to determine the heat release rate of electric-vehicle-scale lithium-ion batteries N2 - This paper analyses the suitability of the Sensible Enthalpy Rise Approach for measuring the heat release rate of electric-vehicle-scale lithium-ion batteries. An apparatus is designed that meets the conditions of an electric-vehicle-scale lithium-ion battery fire by using cement board as wall material. Modifications of the Sensible Enthalpy Rise Methodology are presented due to the high emissivity and inhomogeneous temperature distribution of the apparatus wall material: a power 4 approach for the heat flow from the walls to the ambient air and an alternative determination methodology for the wall temperature. A one factor at a time parameter study is performed with Computational Fluid Dynamics simulations, investigating a new calibration method based on a fit approach compared to common methods, the wall temperature determination, the approach for the ambient heat flow, the calibration power and the volume flow at the outlet. The simulations show, that suitable estimations of the heat release rate are obtained by using the modifications for wall temperature determination and the power 4 approach for the ambient heat flow. The three calibration methods provide suitable constants, if the calibration power in the same order of magnitude as the mean of the heat release rate profile of the test object. KW - Lithium-ion batteries KW - Heat Release Rate KW - Calorimetry KW - Sensible Enthalpy Rise Approach KW - Computational Fluid Dynamics PY - 2020 U6 - https://doi.org/10.1016/j.firesaf.2020.102989 VL - 114 SP - 1 EP - 14 PB - Elsevier Ltd. AN - OPUS4-50964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eberwein, Robert A1 - Rogge, Andreas A1 - Behrendt, F. A1 - Knaust, Christian T1 - Dispersion Modeling of LNG-Vapor on Land – A CFD-Model Evaluation Study N2 - Based on methane from renewable resources, LNG is an alternative fuel for heavy and long-distance traffic in land transport. Contrary to its positive properties, the fuel contains risks from an explosion and extremely low temperatures for personal and infrastructure safety. CFD-models are suitable for doing risk analyses for arbitrary scenarios. For examining how to model for risk research the dispersion of LNG-vapor, this paper contains a model variant study, with an evaluation by experiments. This paper describes the use of the CFD-code ANSYS Fluent for simulating experiments of the ‘LNG Safety Program Phase II‘. The content of the well-documented experiments was the research of the vaporization rate of LNG on land and the dispersion of LNG-vapor in the air. Based on the comparison to two experiments, overall 12 CFD-model variants with varying thermal and turbulence parameters were examined how they affect the transient LNG-vapor dispersion in air. The definition of turbulence-boundary-condition at the domain borders had the biggest impact on modeling, followed by the turbulence model. The most accurate model variant had been applied for observing the spreading behavior of LNG-vapor in the air after evaporation on land and analyzing the influence of the LNG-composition to the dispersion. The results show that the mixture of LNG-vapor and the air in the free field is cooler than the ambient air and spreads like a heavy gas on the ground. KW - LNG KW - CFD KW - Heavy gas KW - Model evaluation PY - 2020 U6 - https://doi.org/10.1016/j.jlp.2020.104116 VL - 65 SP - 104116 PB - Elsevier Ltd. AN - OPUS4-50697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chaves Spoglianti de Souza, Roberto A1 - Andreini, M. A1 - La Mendola, S. A1 - Zehfuß, J. A1 - Knaust, Christian T1 - Probabilistic thermo-mechanical finite element analysis for the fire resistance of reinforced concrete structures N2 - This paper presents a probabilistic methodology based on the thermo-mechanical finite elements analysis to investigate the impact of the variability of the thermal properties of the concrete in the fire safety of structures. This is meant to evaluate if characteristic values or safety factors for the conductivity and specific heat are required during the semi-probabilistic structural fire safety assessment. To illustrate the use of the proposed methodology, this work includes a case-study with a tunnel lining which considers the uncertainties related to the thermal and mechanical properties of the concrete, the soil load, and the temperatures described by the standard temperature-time curve. Two failure criteria are considered: one was the maximum temperature of 300 °C at the reinforcement and the other based on the temperature-dependent strength as provided in the Eurocode EN 1992-1-2. Several finite element analyses are performed. The design of experiments is executed by a Correlation Latin Hypercube Sampling. The calculated probability of failure has different values depending on the adopted failure criteria. A sensitivity analysis using the Spearman's rank correlation coefficient was carried out and demonstrates that the uncertainty related to the specific heat has the greatest impact on the results. KW - Thermo-mechanical PY - 2019 U6 - https://doi.org/10.1016/j.firesaf.2018.12.005 SN - 0379-7112 SN - 1873-7226 VL - 104 SP - 22 EP - 33 PB - Elsevier AN - OPUS4-48583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chaves Spoglianti de Souza, Roberto A1 - Andreini, M. A1 - La Mendola, S. A1 - Zehfuß, J. A1 - Knaust, Christian T1 - Probabilistic thermo-mechanical finite element analysis for the fire resistance of reinforced concrete structures N2 - This paper presents a probabilistic methodology based on the thermo-mechanical finite elements analysis to investigate the impact of the variability of the thermal properties of the concrete in the fire safety of structures. This is meant to evaluate if characteristic values or safety factors for the conductivity and specific heat are required during the semi-probabilistic structural fire safety assessment. To illustrate the use of the proposed methodology, this work includes a case-study with a tunnel lining which considers the uncertainties related to the thermal and mechanical properties of the concrete, the soil load, and the temperatures described by the standard temperature-time curve. Two failure criteria are considered: one was the maximum temperature of 300 °C at the reinforcement and the other based on the temperature-dependent strength as provided in the Eurocode EN 1992-1-2. Several finite element analyses are performed. The design of experiments is executed by a Correlation Latin Hypercube Sampling. The calculated probability of failure has different values depending on the adopted failure criteria. A sensitivity analysis using the Spearman's rank correlation coefficient was carried out and demonstrates that the uncertainty related to the specific heat has the greatest impact on the results. KW - Fire Safety KW - Concrete KW - Probabilistic KW - Finite Elements PY - 2018 U6 - https://doi.org/10.1016/j.firesaf.2018.12.005 SN - 0379-7112 VL - 104 SP - 22 EP - 33 PB - Elsevier AN - OPUS4-47422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voigt, Sascha A1 - Sträubig, Felix A1 - Kwade, A. A1 - Zehfuß, J. A1 - Knaust, Christian T1 - An empirical model for lithium-ion battery fires for CFD applications N2 - Lithium-ion batteries are a key technology to achieve the goals of limiting climate change due to the important role as traction technology for Electric Vehicles and in stationary energy storage systems. Over(dis) charge, mechanical damage due to accidents or thermal abuse such as fires can initiate an accelerated self-heating process of the batteries, called thermal runaway. A thermal runaway can propagate from cell to cell within a larger assembly of cells such as modules or battery packs and can cause rapid heat and toxic gas emissions. The resulting battery fire can spread to adjacent facilities, e.g. other cars in underground car parks or to a whole building in case of a large stationary energy storage. For proof of fire protection requirements or to design suitable fire protection systems, Computational Fluid Dynamic (CFD) simulations are getting more and more important. The aim of CFD fire simulations is to predict the global hazards of a fire to its surroundings, that is mainly characterized by the release of heat and smoke and its spread in the fire environment. There are many numerical investigations of lithium-ion batteries in the literature. One class of models is used to simulate the charge and discharge process of lithium-ion batteries and to predict the temperature or voltage evolution inside the battery. On the other hand, there are models describing batteries under abuse conditions to predict the consequences of a thermal runaway event to the local environment, like the temperatures inside a battery or at the battery surface. Henriksen et al. use a generic battery gas mixture to simulate an explosion of vented gases from a Lithium Iron Phosphate battery and compare experimental results for the explosion pressure and the position of the flame front to the outcomes of a simulation with Xifoam. Larsson et al. used a combination of CFD simulations with FDS and thermal model with COMSOL to predict the temperature development of neighboring cells in a thermal runaway propagation. Truchot et al. use a design Heat Release Rate (HRR) curve for a battery based on experimental measurements to build up an overall HRR curve for a truck loaded with 100 lithium-ion batteries. This summed up HRR and corresponding smoke production curve is then used as an input for a simulation of a truck fire in a tunnel with Fire Dynamics Simulator (FDS). The pre-definition of the HRR curve is a frequently used method in fire engineering. It has the disadvantage, that the heat release cannot be influenced by physical processes, such as changed ventilation conditions or extinguishing measures. In this paper, a model is presented that determines the release of heat and gases based on the thermal runaway mechanisms of the battery, which can be used in CFD fire simulations with focus on prediction of fire hazards to nearby environment. KW - Lithium-ion battery KW - Battery fires KW - Computational Fluid Dynamic (CFD) KW - Empirical model PY - 2023 U6 - https://doi.org/10.1016/j.firesaf.2022.103725 SN - 0379-7112 VL - 135 IS - 135 SP - 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-57347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -