TY - JOUR A1 - Kusche, Christian A1 - Knaust, Christian A1 - Hahn, S.-K. A1 - Krause, U. T1 - Experimental investigations of the combustion efficiency for fire load calculations T1 - Experimetelle Untersuchungen der Verbrennungseffektivität für Brandlastberechnungen N2 - The amount of heat, which is released by fire loads during the combustion process, depends on the material characteristics, the ventilation conditions, the storage density and the distribution. To evaluate the structural stability of buildings in case of fire, the fire load has to be quantified. In Germany, the fire load is quantified by using the combustion factor m, while internationally the combustion efficiency χ is applied. Both factors assess the burning behavior of materials, but the determination is carried out in different ways. Since the testing facility was abolished fifteen years ago, it is not possible to determine the combustion factor m anymore. So, it should be found out, if the combustion efficiency χ is a convenient method to quantify the fire load under the consideration of the German standards. As a part of the research, combustion efficiencies χ were determined for eight materials in the cone calorimeter and the single burning item test at different heat fluxes. The values of the combustion efficiencies χ as well as the corresponding combustion factors m were discussed and compared to the values of the literature. The results show an influence of the testing facility on the combustion efficiency. The values of the combustion efficiency determined in the single burning item test were higher than the values from the cone calorimeter. N2 - Die Wärmefreisetzung einer Brandlast im Brandfall hängt von den Materialeigenschaften, den Ventilationsbedingungen, der Lagerungsdichte und der Verteilung im Brandraum ab. Die Festlegung der erforderlichen Feuerwiderstandsdauer in industriellen Gebäuden erfolgt auf Basis der Brandlast. In Deutschland dient der Abbrandfaktor m (m-Faktor) zur Berechnung der Brandlast, wohingegen international die Verbrennungseffektivität χ zur Berechnung verwendet wird. Zwar charakterisieren beide Faktoren das Abbrandverhalten von Stoffen, jedoch sind ihre Bestimmungsmethoden unterschiedlich. Seit der Abschaffung des letzten m-Faktor-Ofens vor mehr als 15 Jahren, ist die Bestimmung von m-Faktoren nicht mehr möglich. Daher soll untersucht werden, ob die Verbrennungseffektivität χ an Stelle des m-Faktors zur Berechnung der Brandlast im Rahmen deutscher Normen verwendet werden kann. Für diese Untersuchungen wurde die Verbrennungseffektivität χ von acht Stoffen im Cone Calorimeter und im Single Burning Item Test bei unterschiedlichen Wärmestromdichten bestimmt. Die ermittelten Werte der Verbrennungseffektivität χ wurden den bestehenden m-Faktoren gegenübergestellt und mit Werten aus der Literatur verglichen. Die Untersuchungen haben ergeben, dass die Prüfapparaturen zu unterschiedlichen Verbrennungseffektivitäten führen. Die Werte aus der Messung des SBI waren höher als die des Cone Calorimeters KW - Combustion efficiency KW - Combustion factor KW - Fire load density KW - Cone calorimeter KW - Single burning item test PY - 2015 DO - https://doi.org/10.3139/120.110795 SN - 0025-5300 VL - 57 IS - 10 SP - 843 EP - 849 PB - Carl Hanser Verlag CY - München AN - OPUS4-38738 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kusche, Christian A1 - Knaust, Christian A1 - Krause, U. T1 - Experimentelle Untersuchungen zur Verbrennungseffektivität als Grundlage für Brandlastberechnungen der DIN 18230 N2 - Die Brandlastberechnung für Industriebauten erfolgt in Deutschland entsprechend der DIN 18230-1. Brandlasten bestehen in den meisten Fällen aus verschiedenen brennbaren Feststoffen und Flüssigkeiten, die in Abhängigkeit ihrer Lagerungsart, ihren stofflichen Eigenschaften und den Ventilationsbedingungen unterschiedliche Wärmeleistungen zur Folge haben. Als Eingangsgröße zur Brandlastberechnung berücksichtigt der sogenannte Abbrandfaktor m (m-Faktor) das individuelle Abbrandverhalten von Feststoffen und Flüssigkeiten. Sein Wert ergibt sich aus dem Vergleich der zeitlichen Temperaturentwicklung beim Abbrand einer Probe mit der Referenzprobe. Bei der Referenzprobe handelt es sich um sägerauhes Fichtenholz, dem ein m-Faktor von m = 1,0 zugeordnet wurde. Die Bestimmung des m-Faktors erfolgte bis vor einigen Jahren entsprechend der DIN 18230-2 in dem m-Faktor-Ofen. Bis zu der Verschrottung des letzten in Deutschland existierenden m-Faktor-Ofens wurden mehr als 100 m-Faktoren von verschiedenen Stoffen ermittelt. Zurzeit ist es nicht möglich zur Brandlastermittlung m-Faktoren experimentell zu bestimmen. Da infolge industrieller Entwicklungen zunehmend neue Stoffe auf den Markt kommen, deren Abbrandverhalten zu bestimmen. T2 - 3. Magdeburger Brand- und Explosionsschutztag / vfdb-Workshop CY - Magdeburg, Germany DA - 21.03.2013 KW - Verbrennungseffektivität KW - Brandlastberechnung KW - Abbrandfaktor m PY - 2013 SN - 978-3-00-041601-9 SP - 1 EP - 12 AN - OPUS4-30074 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kusche, Christian A1 - Knaust, Christian A1 - Krause, U. T1 - Ermittlung von Verbrennungseffizienzen für Feststoffe N2 - Brandlasten stellen eine Gefahr für den Menschen sowie für das industrielle Gebäude dar, in dem sie gelagert sind. Das Brandverhalten der Brandlasten bestimmt dabei maßgeblich die Schwere der Gefahr. Brandschutzmaßnahmen dienen dazu, im Brandfall das Schadensausmaß zu minimieren. Um geeignete Brandschutzmaßnahmen ableiten zu können, ist es erforderlich, das Brandverhalten der Materialien zu bewerten. Eine international angewandte Möglichkeit zur Bewertung des Brandverhaltens von Feststoffen und Flüssigkeiten ist die Verbrennungseffizienz χ. Sie ist das Verhältnis der während einer Verbrennung effektiv freigesetzten Wärme (effektive Verbrennungswärme) zu der maximal möglichen Wärmemenge (Heizwert). Die Grundlage zur Bestimmung von Verbrennungseffizienzen stellen die Wärmefreisetzungsrate (HRR) und die Massenverlustrate (MLR) dar. Ein standardisiertes Bestimmungsverfahren existiert nicht. So liegt es in dem Ermessen des Anwenders, in welcher Prüfapparatur die Experimente durchgeführt werden und welcher Zeitbereich der HRR und der MLR zur Berechnung der Verbrennungseffizienz verwendet wird. Im Rahmen dieser Arbeit wurden Versuche im Cone Calorimeter und im Single Burning Item test anhand von hölzernen Materialien durchgeführt. Die Ergebnisse zeigen auf, dass sich in Abhängigkeit von der verwendeten Prüfapparatur und in Abhängigkeit des für die Berechnung betrachten Versuchszeitraumes verschiedene Werte der Verbrennungseffizienz ergeben. Auf Grundlage dieser Erkenntnisse wurde eine Methode entwickelt, mit der reproduzierbare Werte berechnet werden können. Dabei erfolgt die Berechnung lediglich für die Vollbrandphase. Diese Brandphase stellt die Hauptbrandphase dar und ist durch eine gleichmäßige Verbrennung mit wenigen Änderungen in der Branddynamik gekennzeichnet. T2 - 5. Magdeburger Brand- und Explosionsschutztage 2017 CY - Magdeburg, Germany DA - 23.03.2017 KW - Verbrennungseffizienzen KW - Rechenmodelle KW - Cone Calorimeter KW - Single Burning Item test KW - Brandverhalten KW - Modellierung von Bränden KW - Rauchausbreitung KW - Validierung KW - Brandlastberechnung PY - 2017 SN - 978-3-00-056201-3 DO - https://doi.org/10.978.300/0562013 SP - 1 EP - 13 PB - Otto-von-Guericke-Universität Magdeburg CY - Magdeburg AN - OPUS4-40047 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, S.-K. A1 - Rost, M. A1 - Kusche, Christian A1 - Knaust, Christian A1 - Krause, U. T1 - Dokumentation der Entwicklung des m-Faktors und neuer Aspekt der Verbrennungseffizienz T1 - Structural fire protection in industrial buildings - development of the m-factor and new aspect of the combustion efficiency N2 - Vor dem Hintergrund der Zurückziehung der DIN 18230 Teil 2 zur Bestimmung des m-Faktors von Materialien für die Brandlastbewertung im Industriebau müssen neue Wege gefunden werden, wie das Abbrandverhalten alternativ quantifiziert werden kann. Der Beitrag fasst die Entstehung und die Entwicklung der Bestimmungsweise von Abbrandfaktoren zusammen und gibt Ausblick auf eine neue Möglichkeit zur Bewertung von Brandlasten, die Verbrennungseffizienz. KW - Abbrandfaktor KW - DIN 18230 KW - Indrustriebau KW - Brandschutz im Brandlast KW - Verbrennungseffizienz PY - 2017 DO - https://doi.org/10.1002/bate.201700020 SN - 0932-8351 SN - 1437-0999 VL - 94 IS - 6 SP - 337 EP - 343 PB - Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG CY - Berlin AN - OPUS4-40962 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Palis, Stephan A1 - Sträubig, Felix A1 - Voigt, Sascha A1 - Knaust, Christian T1 - Experimental investigation of the impact of water mist on high-speed non-premixed horizontal methane jet fires N2 - In this paper, the influence of a fixed water mist firefighting system on a high-speed non-premixed horizontal methane jet fire is investigated with focus on its effect on temperatures and heat load of the jet fire and on ist surroundings. Six tests are performed in which gas is released out of an orifice with a diameter of 1 mm and a release pressure of up to 186 bar. In addition to temperature and radiation measurements, the release pressure, gas mass flow rate and exhaust gas concentrations are detected to determine the heat release. Video and IRanalysis are used to evaluate the interactions between jet fire and water mist. The experiments show, that water mist reduces the temperatures inside the jet fire flow field and its radiative heat flux. It can lower the Risk of ignition of adjacent surfaces and materials, as temperatures fall below autoignition temperatures of common materials like plastics. Although water mist does not extinguish the fire, it has an impact on the energy release by reducing combustion efficiency due to heat exchange with the water mist and oxygen displacement. KW - Fixed firefighting system KW - Jet fire KW - Water mist KW - Fire test KW - Methane KW - Supersonic flow PY - 2020 DO - https://doi.org/10.1016/j.firesaf.2020.103005 VL - 114 SP - 103005 PB - Elsevier Ltd. AN - OPUS4-50963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voigt, Sascha A1 - Sträubig, Felix A1 - Palis, Stephan A1 - Kwade, A. A1 - Knaust, Christian T1 - CFD-analysis of Sensible Enthalpy Rise Approach to determine the heat release rate of electric-vehicle-scale lithium-ion batteries N2 - This paper analyses the suitability of the Sensible Enthalpy Rise Approach for measuring the heat release rate of electric-vehicle-scale lithium-ion batteries. An apparatus is designed that meets the conditions of an electric-vehicle-scale lithium-ion battery fire by using cement board as wall material. Modifications of the Sensible Enthalpy Rise Methodology are presented due to the high emissivity and inhomogeneous temperature distribution of the apparatus wall material: a power 4 approach for the heat flow from the walls to the ambient air and an alternative determination methodology for the wall temperature. A one factor at a time parameter study is performed with Computational Fluid Dynamics simulations, investigating a new calibration method based on a fit approach compared to common methods, the wall temperature determination, the approach for the ambient heat flow, the calibration power and the volume flow at the outlet. The simulations show, that suitable estimations of the heat release rate are obtained by using the modifications for wall temperature determination and the power 4 approach for the ambient heat flow. The three calibration methods provide suitable constants, if the calibration power in the same order of magnitude as the mean of the heat release rate profile of the test object. KW - Lithium-ion batteries KW - Heat Release Rate KW - Calorimetry KW - Sensible Enthalpy Rise Approach KW - Computational Fluid Dynamics PY - 2020 DO - https://doi.org/10.1016/j.firesaf.2020.102989 VL - 114 SP - 1 EP - 14 PB - Elsevier Ltd. AN - OPUS4-50964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voigt, Sascha A1 - Sträubig, Felix A1 - Palis, Stephan A1 - Kwade, A. A1 - Knaust, Christian T1 - Experimental comparison of Oxygen Consumption Calorimetry and Sensible Enthalpy Rise Approach for determining the heat release rate of large-scale lithium-ion battery fires N2 - From a fire safety point of view, the burning behavior of lithium-ion batteries is of high interest. The heat release rate (HRR) is the most important fire parameter to analyze the fire hazards of burning objects, so that an accurate determination of it is crucial. In this paper, two different measurement techniques, the Oxygen Consumption Calorimetry (OCC) and the Sensible Enthalpy Rise Approach (SERA) are simultaneously performed in the same calorimeter to measure the HRR of two different types of lithium-ion batteries. HRR values as well as total energies determined by SERA are higher than measured with OCC: The total energy released is about 10–12 times (SERA) and 6–9.5 times (OCC) the electrical stored energy for both battery types, whereas the timescales of the release differ strongly between the types, resulting in maximum HRRs of 3.4 MW (SERA) and 1.5 MW (OCC) for one module of type A and 0.8 MW (SERA) and 0.6 (OCC) of type B respectively. Furthermore, a sensitive dependency of the HRR measurement with SERA on the position of the wall temperature measurement is observed. KW - Fire tests KW - Lithium-ion-batteries KW - Heat release rate KW - Calorimetry KW - Sensible enthalpy rise approach KW - Oxygen consumption calorimetry PY - 2021 DO - https://doi.org/10.1016/j.firesaf.2021.103447 SN - 0379-7112 IS - 126 PB - Elsevier Ltd. AN - OPUS4-53441 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voigt, Sascha A1 - Sträubig, Felix A1 - Kwade, A. A1 - Zehfuß, J. A1 - Knaust, Christian T1 - An empirical model for lithium-ion battery fires for CFD applications N2 - Lithium-ion batteries are a key technology to achieve the goals of limiting climate change due to the important role as traction technology for Electric Vehicles and in stationary energy storage systems. Over(dis) charge, mechanical damage due to accidents or thermal abuse such as fires can initiate an accelerated self-heating process of the batteries, called thermal runaway. A thermal runaway can propagate from cell to cell within a larger assembly of cells such as modules or battery packs and can cause rapid heat and toxic gas emissions. The resulting battery fire can spread to adjacent facilities, e.g. other cars in underground car parks or to a whole building in case of a large stationary energy storage. For proof of fire protection requirements or to design suitable fire protection systems, Computational Fluid Dynamic (CFD) simulations are getting more and more important. The aim of CFD fire simulations is to predict the global hazards of a fire to its surroundings, that is mainly characterized by the release of heat and smoke and its spread in the fire environment. There are many numerical investigations of lithium-ion batteries in the literature. One class of models is used to simulate the charge and discharge process of lithium-ion batteries and to predict the temperature or voltage evolution inside the battery. On the other hand, there are models describing batteries under abuse conditions to predict the consequences of a thermal runaway event to the local environment, like the temperatures inside a battery or at the battery surface. Henriksen et al. use a generic battery gas mixture to simulate an explosion of vented gases from a Lithium Iron Phosphate battery and compare experimental results for the explosion pressure and the position of the flame front to the outcomes of a simulation with Xifoam. Larsson et al. used a combination of CFD simulations with FDS and thermal model with COMSOL to predict the temperature development of neighboring cells in a thermal runaway propagation. Truchot et al. use a design Heat Release Rate (HRR) curve for a battery based on experimental measurements to build up an overall HRR curve for a truck loaded with 100 lithium-ion batteries. This summed up HRR and corresponding smoke production curve is then used as an input for a simulation of a truck fire in a tunnel with Fire Dynamics Simulator (FDS). The pre-definition of the HRR curve is a frequently used method in fire engineering. It has the disadvantage, that the heat release cannot be influenced by physical processes, such as changed ventilation conditions or extinguishing measures. In this paper, a model is presented that determines the release of heat and gases based on the thermal runaway mechanisms of the battery, which can be used in CFD fire simulations with focus on prediction of fire hazards to nearby environment. KW - Lithium-ion battery KW - Battery fires KW - Computational Fluid Dynamic (CFD) KW - Empirical model PY - 2023 DO - https://doi.org/10.1016/j.firesaf.2022.103725 SN - 0379-7112 VL - 135 IS - 135 SP - 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-57347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nandish, Ranjith A1 - Knaust, Christian A1 - Zehfuß, J. T1 - Numerical investigations of a large fire exposure crib test - presenting different pyrolysis modelling methodologies and numerical results N2 - The need for numerical-based approaches to investigate the fire behaviour in buildings with combustible components is growing due to the increasing use of timber by the construction industry in order to meet the "Climate Action Plan 2050". This requires consideration of the complex kinetic processes that take place during the burning of the wood in the numerical models. This is accomplished by using computational fluid dynamics (CFD) to numerically model the material pyrolysis and combustion processes. This paper presents three different approaches for simulating the behaviour of a wood crib fire using the Fire Dynamics Simulator (FDS). These approaches are based on either prescribing the burning rate of the wood directly from the physical experiments or using the kinetic parameters to govern the underlying processes, such as pyrolysis. Wooden crib fire experiments carried out by the RISE research institute in Sweden inside the combustion chamber were used to validate all the methods. The numerical results from the method, which utilized the experimentally determined burning rate, were in good agreement with the experimental results, with a maximum deviation of 6% in the case of HRR. On the other hand, the model that needs kinetic parameters as its input has shown maximum discrepancies of 12% and 33% compared to experimental results. These methods are sensitive to the input parameters and the extent of dependency needs to be investigated. KW - Wooden buildings KW - Ppyrolysis KW - Wood combustion KW - Wood fire loads PY - 2024 SN - 1099-1018 SP - 1 EP - 25 PB - John Wiley & Sons Ltd. AN - OPUS4-62253 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Knaust, Christian T1 - Modelling tunnel fires considering the structure, fluid flow and the soot N2 - The time dependent thermal behavior is analyzed with FLUENT for the fluid as well as the solid region (concrete component) in case of a 100 MW n-heptane fire. To study the effect of parameters in mathematical-physical models several sensitivity studies were carried out to investigate the effect on the fluid flow as well as on the component. The influence of soot was additionally considered. FDS simulations as well as empirical calculations considering underlying assumptions are additionally used to examine the plausibility of results from the FLUENT simulations. This is an appropriate method if no experimental results are available. Recommendations are given for choosing parameters in mathematical-physical models e.g. radiation models. The results of the CFD investigations show that considering the influence of soot provides maximum temperatures which were 200 K lower than without soot. T2 - Seventh International Symposium on Tunnel Safety and Security CY - Montréal, Canada DA - 16.03.2016 KW - Heat transfer KW - Conduction KW - Radiation KW - Computational fluid dynamics KW - Temperature dependent properties KW - Model checking KW - Analytical and empirical calculations KW - ANSYS FLUENT KW - FDS PY - 2016 SN - 978-91-88349-11-8 SN - 0284-5172 SP - 617 EP - 628 CY - Boras AN - OPUS4-37688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -