TY - JOUR A1 - Hahn, S.-K. A1 - Rost, M. A1 - Kusche, Christian A1 - Knaust, Christian A1 - Krause, U. T1 - Dokumentation der Entwicklung des m-Faktors und neuer Aspekt der Verbrennungseffizienz T1 - Structural fire protection in industrial buildings - development of the m-factor and new aspect of the combustion efficiency JF - Bautechnik N2 - Vor dem Hintergrund der Zurückziehung der DIN 18230 Teil 2 zur Bestimmung des m-Faktors von Materialien für die Brandlastbewertung im Industriebau müssen neue Wege gefunden werden, wie das Abbrandverhalten alternativ quantifiziert werden kann. Der Beitrag fasst die Entstehung und die Entwicklung der Bestimmungsweise von Abbrandfaktoren zusammen und gibt Ausblick auf eine neue Möglichkeit zur Bewertung von Brandlasten, die Verbrennungseffizienz. KW - Abbrandfaktor KW - DIN 18230 KW - Indrustriebau KW - Brandschutz im Brandlast KW - Verbrennungseffizienz PY - 2017 DO - https://doi.org/10.1002/bate.201700020 SN - 0932-8351 SN - 1437-0999 VL - 94 IS - 6 SP - 337 EP - 343 PB - Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG CY - Berlin AN - OPUS4-40962 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lerena, P. A1 - Auerkari, Pertti A1 - Knaust, Christian A1 - Vela-Wallenschus, Iris A1 - Krause, U. T1 - Approaches towards a generic methodology for storage of hazardous energy carriers and waste products JF - Journal of risk research N2 - Energy carriers – either conventional or 'new' ones – have to be provided in large amounts to meet the requirements of permanent availability and reliable supply of electricity. Depending on their state of aggregation, energy carriers are either stored in large masses (if solid or liquid) or at elevated pressures (if gaseous). Both impose the hazard of large-scale fire, in the latter case additionally the danger of explosion or unintended release. Very similar hazards occur for wastes. Solid wastes are present in large masses and only a small part is recycled. Most of the solid wastes are used in energy conversion. The main gaseous waste is CO2. During capturing also the hazard of unintended release exists. In this article, existing approaches for safe storage and fire prevention are discussed and a generic methodology is outlined. This methodology consists of the following steps: • gaining knowledge about the behaviour of the material stored (reactivity, thermal stability, etc.), • assessing the environmental conditions for the storage site (neighbourhood, safety distances, etc.), • assessment of prospective consequences of an incident and • development of individual loss prevention conceptions. All steps require both experimental testing and theoretical considerations about accident scenarios as integral parts of the methodology. KW - Storage KW - Hazardous materials KW - Energy carriers PY - 2013 DO - https://doi.org/10.1080/13669877.2012.729524 SN - 1366-9877 SN - 1466-4461 N1 - Geburtsname von Vela-Wallenschus, Iris: Vela, I. - Birth name of Vela-Wallenschus, Iris: Vela, I. VL - 16 IS - 3-4 SP - 433 EP - 445 PB - Taylor & Francis CY - London [u.a.] AN - OPUS4-26882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kaudelka, Sven A1 - Knaust, Christian A1 - Krause, U. T1 - Ansätze zur numerischen Berechnung von Brandeinwirkungen auf Bauteile JF - Chemie Ingenieur Technik N2 - Bei der Erstellung von brandschutztechnischen Nachweisen für Industriebauten werden häufig Ingenieurmethoden des Brandschutzes genutzt. Dazu zählen die Modellierung und Berechnung von Brandszenarien mittels numerischer Strömungsmechanik (computational fluid dynamics, CFD). In dieser Arbeit wurde ein auf numerischer Strömungs- und Strukturmechanik basierendes Verfahren zur brandschutztechnischen Bemessung von Bauteilen am Beispiel einer Industriehalle angewendet. Instationäre Temperaturverläufe aus der Heißgasschicht dienten dabei als Eingangswerte für die Bauteilberechnung. Aus den Ergebnissen wurde die äquivalente Branddauer berechnet, mit der die rechnerisch erforderlichen Feuerwiderstandsdauern der Bauteile bestimmt werden konnte. KW - Äquivalente Branddauer KW - Brandschutz im Industriebau KW - Feuerwiderstandsdauer KW - Numerische Strömungsmechanik KW - Numerische Strukturmechanik PY - 2016 DO - https://doi.org/10.1002/cite.201500174 SN - 1522-2640 SN - 0009-286X VL - 88 IS - 8 SP - 1157 EP - 1168 PB - Wiley CY - Weinheim AN - OPUS4-38179 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Löhnert, Andrea A1 - Monreal, Nils A1 - Knaust, Christian A1 - Hofmann-Böllinghaus, Anja A1 - Krause, U. T1 - CFD modeling approach of smoke toxicity and opacity for flaming and non-flaming combustion processes JF - Fire and Materials N2 - Current engineer’s methods of fire safety design include various approaches to calculate the fire Propagation and smoke spread in buildings by means of computational fluid dynamics (CFD). Because of the increased computational capacity, CFD is commonly used for prediction of time-dependent safety parameters such as critical temperature, smoke layer height, rescue times, distributions of chemical products, and smoke toxicity and visibility. The analysis of smoke components with CFD is particularly complex, because the composition of the fire gases and also the smoke quantities depends on material properties and also on ambient and burning conditions. Oxygen concentrations and the temperature distribution in the compartment affect smoke production and smoke gas toxicity qualitatively and quantitatively. For safety designs, it can be necessary to take these influences into account. Current smoke models in CFD often use a constant smoke yield that does not vary with different fire conditions. If smoke gas toxicity is considered, a simple approach with the focus on carbon monoxide is often used. On the basis of a large set of experimental data, a numerical smoke model has been developed. The developed numerical smoke model includes optical properties, production, and toxic potential of smoke under different conditions. For the setup of the numerical model, experimental data were used for calculation of chemical components and evaluation of smoke toxicity under different combustion conditions. Therefore, averaged reaction equations were developed from experimental measurements and implemented in ANSYS CFX 14.0. KW - Fire modeling KW - Fire safety KW - Computational fluid dynamics (CFD) KW - Smoke toxicity PY - 2016 DO - https://doi.org/10.1002/fam.2340 SN - 1099-1018 VL - 40 IS - 6 SP - 759 EP - 772 PB - Wiley CY - West Sussex, UK AN - OPUS4-37514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -