TY - CONF A1 - Knaust, Christian T1 - Modelling tunnel fires considering the structure, fluid flow and the soot N2 - The time dependent thermal behavior is analyzed with FLUENT for the fluid as well as the solid region (concrete component) in case of a 100 MW n-heptane fire. To study the effect of parameters in mathematical-physical models several sensitivity studies were carried out to investigate the effect on the fluid flow as well as on the component. The influence of soot was additionally considered. FDS simulations as well as empirical calculations considering underlying assumptions are additionally used to examine the plausibility of results from the FLUENT simulations. This is an appropriate method if no experimental results are available. Recommendations are given for choosing parameters in mathematical-physical models e.g. radiation models. The results of the CFD investigations show that considering the influence of soot provides maximum temperatures which were 200 K lower than without soot. T2 - Seventh International Symposium on Tunnel Safety and Security CY - Montréal, Canada DA - 16.03.2016 KW - Heat transfer KW - Conduction KW - Radiation KW - Computational fluid dynamics KW - Temperature dependent properties KW - Model checking KW - Analytical and empirical calculations KW - ANSYS FLUENT KW - FDS PY - 2016 SN - 978-91-88349-11-8 SN - 0284-5172 SP - 617 EP - 628 CY - Boras AN - OPUS4-37688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Berchtold, Florian A1 - Knaust, Christian A1 - Thöns, S. A1 - Rogge, Andreas T1 - Risk analysis in road tunnels – most important risk indicators N2 - Methodologies on fire risk analysis in road tunnels consider numerous factors affecting risks (risk indicators) and express the results by risk measures. But only few comprehensive studies on effects of risk indicators on risk measures are available. For this reason, this study quantifies the effects and highlights the most important risk indicators with the aim to Support further developments in risk analysis. Therefore, a system model of a road tunnel was developed to determine the risk measures. The system model can be divided into three parts: the fire part connected to the fire model Fire Dynamics Simulator (FDS); the evacuation part connected to the evacuation model FDS+Evac; and the frequency part connected to a model to calculate the frequency of fires. This study shows that the parts of the system model (and their most important risk indicators) affect the risk measures in the following order: first, fire part (maximum heat release rate); second, evacuation part (maximum preevacuation time); and, third, frequency part (specific frequency of fire). The plausibility of These results is discussed with view to experiences from experimental studies and past fire incidents. Conclusively, further research can focus on these most important risk indicators with the aim to optimise risk analysis. T2 - Seventh International Symposium on Tunnel Safety and Security CY - Boras, Sweden DA - 16.03.2016 KW - Fire KW - Risk KW - Road KW - Tunnel KW - Analysis PY - 2016 SN - 978-91-88349-11-8 SN - 0284-5172 SP - 637 EP - 648 CY - Boras, Sweden AN - OPUS4-37689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Berchtold, Florian A1 - Knaust, Christian A1 - Rogge, Andreas A1 - Arnold, L. A1 - Thöns, Sebastian ED - Lönnermark, Anders ED - Ingason, Haukur T1 - Risk Analysis for Road Tunnels – A Metamodel to Efficiently Integrate Complex Fire Scenarios N2 - Fires in road tunnels constitute complex scenarios with interactions between the fire, tunnel users and safety measures. More and more methodologies for risk analysis quantify the consequences of these scenarios with complex models. Examples for complex models are the computational fluid dynamics model Fire Dynamics Simulator (FDS) and the microscopic evacuation model FDS+Evac. However, the high computational effort of complex models often limits the number of scenarios in practice. To balance this drawback, the scenarios are often simplified. Accordingly, there is a challenge to consider complex scenarios in risk analysis. To face this challenge, we improved the metamodel used in the methodology for risk analysis presented on ISTSS 2016. In general, a metamodel quickly interpolates the consequences of few scenarios simulated with the complex models to a large number of arbitrary scenarios used in risk analysis. Now, our metamodel consists of the projection array-based design, the moving least squares method, and the prediction interval to quantify the metamodel uncertainty. Additionally, we adapted the projection array-based design in two ways: the focus of the sequential refinement on regions with high metamodel uncertainties; and the combination of two experimental designs for FDS and FDS+Evac. To scrutinise the metamodel, we analysed the effects of three sequential refinement steps on the metamodel itself and on the results of risk analysis. We observed convergence in both after the second step (ten scenarios in FDS, 192 scenarios in FDS+Evac). In comparison to ISTSS 2016, we then ran 20 scenarios in FDS and 800 scenarios in FDS+Evac. Thus, we reduced the number of scenarios remarkably with the improved metamodel. In conclusion, we can now efficiently integrate complex scenarios in risk analysis. We further emphasise that the metamodel is broadly applicable on various experimental or modelling issues in fire safety engineering. T2 - International Symposium on Tunnel Safety and Security CY - Boras, Sweden DA - 14.03.2018 KW - Risk KW - Metamodel KW - CFD KW - Evacuation KW - Uncertainty PY - 2018 SN - 978-91-88695-48-2 VL - 8 SP - 349 EP - 360 AN - OPUS4-44535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Palis, Stephan A1 - Sträubig, Felix A1 - Voigt, Sascha A1 - Knaust, Christian T1 - Experimental investigation of the impact of water mist on high-speed non-premixed horizontal methane jet fires N2 - In this paper, the influence of a fixed water mist firefighting system on a high-speed non-premixed horizontal methane jet fire is investigated with focus on its effect on temperatures and heat load of the jet fire and on ist surroundings. Six tests are performed in which gas is released out of an orifice with a diameter of 1 mm and a release pressure of up to 186 bar. In addition to temperature and radiation measurements, the release pressure, gas mass flow rate and exhaust gas concentrations are detected to determine the heat release. Video and IRanalysis are used to evaluate the interactions between jet fire and water mist. The experiments show, that water mist reduces the temperatures inside the jet fire flow field and its radiative heat flux. It can lower the Risk of ignition of adjacent surfaces and materials, as temperatures fall below autoignition temperatures of common materials like plastics. Although water mist does not extinguish the fire, it has an impact on the energy release by reducing combustion efficiency due to heat exchange with the water mist and oxygen displacement. KW - Fixed firefighting system KW - Jet fire KW - Water mist KW - Fire test KW - Methane KW - Supersonic flow PY - 2020 U6 - https://doi.org/10.1016/j.firesaf.2020.103005 VL - 114 SP - 103005 PB - Elsevier Ltd. AN - OPUS4-50963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voigt, Sascha A1 - Sträubig, Felix A1 - Palis, Stephan A1 - Kwade, A. A1 - Knaust, Christian T1 - CFD-analysis of Sensible Enthalpy Rise Approach to determine the heat release rate of electric-vehicle-scale lithium-ion batteries N2 - This paper analyses the suitability of the Sensible Enthalpy Rise Approach for measuring the heat release rate of electric-vehicle-scale lithium-ion batteries. An apparatus is designed that meets the conditions of an electric-vehicle-scale lithium-ion battery fire by using cement board as wall material. Modifications of the Sensible Enthalpy Rise Methodology are presented due to the high emissivity and inhomogeneous temperature distribution of the apparatus wall material: a power 4 approach for the heat flow from the walls to the ambient air and an alternative determination methodology for the wall temperature. A one factor at a time parameter study is performed with Computational Fluid Dynamics simulations, investigating a new calibration method based on a fit approach compared to common methods, the wall temperature determination, the approach for the ambient heat flow, the calibration power and the volume flow at the outlet. The simulations show, that suitable estimations of the heat release rate are obtained by using the modifications for wall temperature determination and the power 4 approach for the ambient heat flow. The three calibration methods provide suitable constants, if the calibration power in the same order of magnitude as the mean of the heat release rate profile of the test object. KW - Lithium-ion batteries KW - Heat Release Rate KW - Calorimetry KW - Sensible Enthalpy Rise Approach KW - Computational Fluid Dynamics PY - 2020 U6 - https://doi.org/10.1016/j.firesaf.2020.102989 VL - 114 SP - 1 EP - 14 PB - Elsevier Ltd. AN - OPUS4-50964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eberwein, Robert A1 - Rogge, Andreas A1 - Behrendt, F. A1 - Knaust, Christian T1 - Dispersion Modeling of LNG-Vapor on Land – A CFD-Model Evaluation Study N2 - Based on methane from renewable resources, LNG is an alternative fuel for heavy and long-distance traffic in land transport. Contrary to its positive properties, the fuel contains risks from an explosion and extremely low temperatures for personal and infrastructure safety. CFD-models are suitable for doing risk analyses for arbitrary scenarios. For examining how to model for risk research the dispersion of LNG-vapor, this paper contains a model variant study, with an evaluation by experiments. This paper describes the use of the CFD-code ANSYS Fluent for simulating experiments of the ‘LNG Safety Program Phase II‘. The content of the well-documented experiments was the research of the vaporization rate of LNG on land and the dispersion of LNG-vapor in the air. Based on the comparison to two experiments, overall 12 CFD-model variants with varying thermal and turbulence parameters were examined how they affect the transient LNG-vapor dispersion in air. The definition of turbulence-boundary-condition at the domain borders had the biggest impact on modeling, followed by the turbulence model. The most accurate model variant had been applied for observing the spreading behavior of LNG-vapor in the air after evaporation on land and analyzing the influence of the LNG-composition to the dispersion. The results show that the mixture of LNG-vapor and the air in the free field is cooler than the ambient air and spreads like a heavy gas on the ground. KW - LNG KW - CFD KW - Heavy gas KW - Model evaluation PY - 2020 U6 - https://doi.org/10.1016/j.jlp.2020.104116 VL - 65 SP - 104116 PB - Elsevier Ltd. AN - OPUS4-50697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chaves Spoglianti de Souza, Roberto A1 - Andreini, M. A1 - La Mendola, S. A1 - Zehfuß, J. A1 - Knaust, Christian T1 - Probabilistic thermo-mechanical finite element analysis for the fire resistance of reinforced concrete structures N2 - This paper presents a probabilistic methodology based on the thermo-mechanical finite elements analysis to investigate the impact of the variability of the thermal properties of the concrete in the fire safety of structures. This is meant to evaluate if characteristic values or safety factors for the conductivity and specific heat are required during the semi-probabilistic structural fire safety assessment. To illustrate the use of the proposed methodology, this work includes a case-study with a tunnel lining which considers the uncertainties related to the thermal and mechanical properties of the concrete, the soil load, and the temperatures described by the standard temperature-time curve. Two failure criteria are considered: one was the maximum temperature of 300 °C at the reinforcement and the other based on the temperature-dependent strength as provided in the Eurocode EN 1992-1-2. Several finite element analyses are performed. The design of experiments is executed by a Correlation Latin Hypercube Sampling. The calculated probability of failure has different values depending on the adopted failure criteria. A sensitivity analysis using the Spearman's rank correlation coefficient was carried out and demonstrates that the uncertainty related to the specific heat has the greatest impact on the results. KW - Thermo-mechanical PY - 2019 U6 - https://doi.org/10.1016/j.firesaf.2018.12.005 SN - 0379-7112 SN - 1873-7226 VL - 104 SP - 22 EP - 33 PB - Elsevier AN - OPUS4-48583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Knaust, Christian A1 - Amecke-Mönninghoff, Stephan T1 - Entwicklung eines Verfahrens zur Brandlastberechnung unter Anwendung der Verbrennungseffektivität und unter Berücksichtigung des Temperatur-Zeit-Verlaufs im Bauteil N2 - Nach DIN 18230-1 erfolgt in Deutschland die Brandlastberechnungen unter Anwendung des Abbrandfaktors m. Der Abbrandfaktor m ist ein dimensionsloser Beiwert mit dem die Brandlast aus einem Stoff oder Stoffgemisch bewertet wird. Neben dem Brandverhalten des Stoffes berücksichtigt er das Temperatur-Zeit-Verhalten im Bauteil. Die einzige Prüfapparatur, mit der Abbrandfaktoren bestimmt wurden, ist jedoch nicht mehr existent. Ein Wiederaufbau der abgeschafften Prüfapparatur wurde wegen apparateabhängigen Messunsicherheiten und auch aus wirtschaftlichen Gründen als nicht sinnvoll angesehen. Die Erarbeitung eines äquivalenten Verfahrens zum Abbrandfaktor m unter Verwendung der Verbrennungseffektivität und unter Berücksichtigung der Bauteilerwärmung war daher Gegenstand dieses Forschungsvorhabens. Ziel war es für Brandlastberechnungen nach DIN 18230-1 die Verbrennungseffektivität anzuwenden. Die Verbrennungseffektivität beschreibet jedoch nur den verringerten Energieumsatz von Stoffen im Brandraum. Es wurde daher ein Verfahren erarbeitet, dass ergänzend zur Brandlastberechnung unter Anwendung der Verbrennungseffektivität das Temperatur-Zeit-Verhalten in einem brandbelastenden Bauteil berücksichtigt. KW - Rechenmodelle KW - Ansys CFX KW - FDS KW - Computational fluid dynamics KW - CFD KW - Rauchausbreitung KW - Validierung KW - U-Bahn KW - Brandszenarien KW - Modellierung von Bränden PY - 2017 SN - 978-3-8167-9928-3 VL - F 3001 SP - 1 EP - 53 PB - Fraunhofer IRB Verlag CY - Stuttgart AN - OPUS4-39667 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Knaust, Christian A1 - Festag, S. A1 - Brüne, M. A1 - Dietrich, Matthes A1 - Amecke-Mönninghoff, Stephan A1 - Konrath, B. A1 - Arnold, L. T1 - Modellierung eines Brandes in einer U-Bahn-Station: Validierung von Rechenmodellen auf der Grundlage von Feldversuchen N2 - Mittels Propan-Brennern mit einer Brennerleistung 750 kW wurden in einer U-Bahn-Station Heißgasversuche durchgeführt und die zeitlichen und örtlichen Verteilungen der physikalischen Größen (Stoffkonzentration, Temperatur und Rauchgasdichte) erfasst. Laborversuche sowie die Feldversuche sind Validierungsgrundlage für ANSYS CFX und FDS und die später im Rechenmodell der U-Bahn-Station zur Untersuchung der Grundströmung und Rauchausbreitung verwendeten mathematisch-physikalischen Modelle. Der Aufsatz stellt das Projekt ORPHEUS vor und diskutiert die ersten Ergebnisse. T2 - Magdeburger Brand- und Explosionsschutztage 2017 CY - Magdeburg, Germany DA - 23.03.2017 KW - Rechenmodelle KW - Ansys CFX KW - FDS KW - Computational fluid dynamics KW - CFD KW - Rauchausbreitung KW - Validierung KW - U-Bahn KW - Brandszenarien KW - Modellierung von Bränden PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-396694 SN - 978-3-00-056201-3 SP - 1 EP - 12 PB - Otto-von-Guericke-Universität Magdeburg CY - Magdeburg AN - OPUS4-39669 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chaves Spoglianti de Souza, Roberto A1 - Andreini, M. A1 - La Mendola, S. A1 - Zehfuß, J. A1 - Knaust, Christian T1 - Probabilistic thermo-mechanical finite element analysis for the fire resistance of reinforced concrete structures N2 - This paper presents a probabilistic methodology based on the thermo-mechanical finite elements analysis to investigate the impact of the variability of the thermal properties of the concrete in the fire safety of structures. This is meant to evaluate if characteristic values or safety factors for the conductivity and specific heat are required during the semi-probabilistic structural fire safety assessment. To illustrate the use of the proposed methodology, this work includes a case-study with a tunnel lining which considers the uncertainties related to the thermal and mechanical properties of the concrete, the soil load, and the temperatures described by the standard temperature-time curve. Two failure criteria are considered: one was the maximum temperature of 300 °C at the reinforcement and the other based on the temperature-dependent strength as provided in the Eurocode EN 1992-1-2. Several finite element analyses are performed. The design of experiments is executed by a Correlation Latin Hypercube Sampling. The calculated probability of failure has different values depending on the adopted failure criteria. A sensitivity analysis using the Spearman's rank correlation coefficient was carried out and demonstrates that the uncertainty related to the specific heat has the greatest impact on the results. KW - Fire Safety KW - Concrete KW - Probabilistic KW - Finite Elements PY - 2018 U6 - https://doi.org/10.1016/j.firesaf.2018.12.005 SN - 0379-7112 VL - 104 SP - 22 EP - 33 PB - Elsevier AN - OPUS4-47422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -