TY - JOUR A1 - Schraut, Katharina A1 - Adamczyk, Burkart A1 - Adam, Christian A1 - Stephan, Dietmar A1 - Meng, Birgit A1 - Simon, Sebastian A1 - von Werder, Julia A1 - Hirsch, Tamino A1 - Manninger, Tanja T1 - Effect of gypsum on the hydration of fused cement clinker from basic oxygen furnace slag N2 - Fused cement clinker can be produced from molten basic oxygen furnace slag (BOFS) by way of a reductive thermochemical treatment. During the thermochemical treatment, oxidic iron is reduced to metallic iron and separated. The resulting low-iron slag has a chemical and mineralogical composition similar to ordinary Portland cement (OPC) clinker. In this study, the hydraulic reactivity of the fused clinker from BOFS with and without gypsum was investigated using isothermal calorimetry, differential scanning calorimetry, in situ X-ray diffraction and powder X-ray diffraction. Furthermore, a synthetic fused clinker without foreign ions and fused clinker produced by a mixture of both materials was studied. The hydraulic reaction of the fused clinker from BOFS was considerably slower than that of OPC. However, the reaction can be accelerated by adding gypsum as a sulfate carrier. Furthermore, the results showed an increased reaction rate with decreasing content of foreign ions such as Fe, P or Mn. KW - General Materials Science KW - Building and Construction PY - 2024 DO - https://doi.org/10.1680/jadcr.23.00070 SN - 0951-7197 SP - 1 EP - 19 PB - Telford AN - OPUS4-59391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hamann, Christopher A1 - Piehl, Patrick A1 - Weingart, Eric A1 - Stolle, Dirk A1 - Al-Sabbagh, Dominik A1 - Ostermann, Markus A1 - Auer, Gerhard A1 - Adam, Christian T1 - Selective removal of zinc and lead from electric arc furnace dust by chlorination–evaporation reactions N2 - Re-melting of scrap in an electric arc furnace (EAF) results in the accumulation of filter dust from off-gas treatment that predominantly consists of iron and zinc oxides. Filter dust is classified as hazardous waste due to its high contents of potentially toxic or ecotoxic elements such as Pb, Cr, Cd, and As. A promising processing route for this waste is selective chlorination, in which the non-ferrous metal oxides are chlorinated and selectively evaporated in form of their respective chlorides from the remaining solids via the process gas flow. Here, we investigate stepwise thermochemical treatment of EAF dust with either waste iron(II) chloride solution or hydrochloric acid at 650, 800, and 1100 ◦C. The Zn and Pb contents of the thermochemically processed EAF dust could be lowered from 29.9% and 1.63% to 0.09% and 0.004%, respectively. Stepwise heating allowed high separation between zinc chloride at the 650 ◦C step and sodium-, potassium-, and lead-containing chlorides at higher temperatures. Furthermore, the lab-scale results were transferred to the use of an experimental rotary kiln highlighting the possibilities of upscaling the presented process. Selective chlorination of EAF dust with liquid chlorine donors is, therefore, suggested as a potential recycling method for Zn-enriched steelworks dusts. KW - Electric arc furnace dust KW - Zinc KW - Selective Chlorination KW - Hazardous waste KW - Resource Recovery PY - 2024 DO - https://doi.org/10.1016/j.jhazmat.2023.133421 SN - 0304-3894 VL - 465 SP - 1 EP - 13 PB - Elsevier AN - OPUS4-59345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Souza Filho, I. A1 - Adam, Christian T1 - Fundamentals of the hydrogen plasma reduction of iron ores N2 - Hydrogen plasma treatment of iron ores or iron oxide containing wastes can be an efficient option to produce green iron e.g. for steel production. This way iron oxide is reduced to metallic iron in the liquid form by the highly reactive species that are formed in a hydrogen plasma. Hydrogen plasma can be used at the same time to remove undesired gangue elements. The presentation shows the experimental setup, shows first results of iron ore reduction by hydrogen plasma and gives an outlook for industrial application of the technology. T2 - European Academic Symposium on EAF steelmaking (EASES 2023) CY - Oulu, Finland DA - 05.06.2023 KW - Hydrogen KW - Plasma KW - Reduction PY - 2023 AN - OPUS4-57626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Adam, Christian A1 - Peplinski, Burkhard A1 - Kley, Gerd A1 - Simon, Franz-Georg ED - Hilty, L. M. T1 - Thermo-chemical treatment of sewage sludge ashes aiming at marketable P-fertiliser products T2 - R'07 World Congress "Recovery of Materials and Energy for Resource Efficiency" CY - Davos, Switzerland DA - 2007-09-03 KW - P-recovery KW - Sewage sludge KW - Thermo-chemical treatment KW - Mineral phases KW - XRD PY - 2007 SN - 978-3-905594-49-2 SP - 14/1 EP - 14/7 PB - EMPA CY - Davos AN - OPUS4-16469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sichler, Theresa Constanze A1 - Adam, Christian A1 - Becker, Roland A1 - Sauer, Andreas A1 - Ostermann, Markus A1 - Barjenbruch, M. T1 - Phosphorus determination in sewage sludge: comparison of different aqua regia digestion methods and ICP-OES, ICP-MS and photometric determination N2 - Phosphorus recycling from sewage sludge will be obligatory in Germany from 2029. Phosphorus content determination in sewage sludge is crucial to assess the prescribed recycling rates. Currently, German law regards sample preparation using aqua regia digestion in a microwave or under reflux conditions as well as instrumental phosphorus determination by ICP-OES, ICP-MS, or photometric determination with ammonium molybdate as equivalent. However, it is questionable whether these methods are indeed equivalent regarding phosphorus quantification in sludges near the limit of 20 g/kg for mandatory recycling. To answer this question, 15 sewage sludges of 11 different wastewater treatment plants were investigated with all permitted method (digestion and measurement) combinations. Moreover, one sewage sludge was also examined in an interlaboratory comparison (ILC) with 28 participants. This study shows that the above-mentioned methods differ in some cases significantly but across all method combinations and sludges, phosphorus recovery was between 80 and 121% after normalization to the grand mean (average of 15 sludges between 85 and 111%). The ILC and the examination of 15 sludges produced largely similar results. There is a tendency to higher phosphorus recovery after microwave digestion compared to reflux digestion and ICP-OES measurements determine higher phosphorus contents than ICP-MS and photometric phosphorus determination. As a result, the authors recommend ICP-OES determination of phosphorus in sewage sludge after microwave digestion. KW - Sewage sludge KW - ICP-OES KW - Phosphous recovery KW - ICP-MS KW - Photometric P determination KW - Interlaboratory comparison PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-558869 DO - https://doi.org/10.1186/s12302-022-00677-1 VL - 34 IS - 99 SP - 1 EP - 14 PB - Springer AN - OPUS4-55886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Adam, Christian A1 - Krüger, Oliver A1 - Herzel, Hannes ED - Lederer, J. ED - Laner, D. ED - Rechberger, H. ED - Fellner, J. T1 - Phosphorus flows in German sewage sludge ashes and potential recovery technologies N2 - Phosphorus (P) is essential for all forms of life and cannot be substituted. It is one of the macro nutrients applied in form of mineral or organic fertilizers in agricultural crop production. Mineral P fertilizers are generally based on phosphate rock, a limited resource. Western Europe completely depends on imports as it has no own relevant phosphate mines. The most abundant phosphate deposits are located only in a few countries such as Morocco, China, South Africa and the United States of America. Furthermore, phosphate rock and as a consequence mineral P fertilizers are often contaminated with the toxic elements cadmium and uranium. In Order to substitute phosphate rock P-bearing waste streams are investigated for their potential to be recyded as fertilizers. Wastewater is one of the important P-bearing waste streams that were in the focus of research in the last 10 years. German wastewater is e.g. a carrier of approx. 70,000 t of phosphorus per year. T2 - International workshop on technospheric mining - Mining the technosphere - drivers and barriers, challenges and opportunities CY - Vienna, Austria DA - 01.10.2015 KW - Phosphorus recovery KW - Sewage sludge ash PY - 2015 SN - 978-3-85234-132-3 SP - 77 EP - 80 AN - OPUS4-34542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herzel, Hannes A1 - Grevel, K.-D. A1 - Emmerling, Franziska A1 - Dachs, E. A1 - Benisek, A. A1 - Adam, Christian A1 - Majzlan, J. T1 - Thermodynamic properties of calcium alkali phosphates Ca(Na,K)PO4 N2 - Calcium alkali phosphates Ca(Na,K)PO4 are main constituents of bioceramics and thermochemically produced phosphorus fertilizers because of their bioavailability. Sparse thermodynamic data are available for the endmembers CaNaPO4 and CaKPO4. In this work, the missing data were determined for the low-temperature phase modifications of the endmembers CaNaPO4 and CaKPO4 and three intermediate Ca(Na,K)PO4 compositions. Standard enthalpy of formation ranges from - 2018.3 ± 2.2 kJ mol-1 to - 2030.5 ± 2.1 kJ mol-1 and standard entropy from 137.2 ± 1.0 J mol-1 K-1 to 148.6 ± 1.0 J mol-1 K-1 from sodium endmember b-CaNaPO4 to potassium endmember b0-CaKPO4. Thermodynamic functions are calculated up to 1400 K for endmembers and the sodium-rich intermediate phase b-Ca(Na0.93K0.07)PO4. Functions above 640 K are extrapolated because of the phase transition from low- to high-temperature phase. Impurities in the synthesized intermediate phases c-Ca(Na0.4K0.6)PO4 and c-Ca Na0.35K0.65)PO4 and one additional phase transition around 500 K impeded the determination of high-temperature thermodynamic functions. In general, data for phase transition temperatures agree with the previously reported phase diagrams. KW - Formation enthalpy KW - Heat capacity KW - Phase transformation KW - Bioceramics KW - Phosphorus fertilizer KW - Entropy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507640 DO - https://doi.org/10.1007/s10853-020-04615-5 VL - 55 SP - 8477 EP - 8490 PB - Springer AN - OPUS4-50764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Adam, Christian A1 - Herzel, Hannes T1 - Phosphorus recovery in Germany – recent developments N2 - The recent developments of phosphorus recovery in Germany were presented. The funding program RePhoR was introduced with focus on the demonstration project R-Rhenania that is coordinated by BAM. T2 - Green Deal 2020 conference CY - Online-Meeting DA - 14.12.2020 KW - Phopshorus recovery KW - Waste water treatment KW - Recycling fertiliser PY - 2020 AN - OPUS4-51837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dombinov, V. A1 - Herzel, Hannes A1 - Meiller, M. A1 - Müller, F. A1 - Willbold, S. A1 - Zang, J. W. A1 - da Fonseca-Zang, W. A. A1 - Adam, Christian A1 - Klose, H. A1 - Poorter, H. A1 - Jablonowski, N. D. A1 - Schrey, S. D. T1 - Sugarcane bagasse ash as fertilizer for soybeans: Effects of added residues on ash composition, mineralogy, phosphorus extractability and plant availability N2 - Sugarcane bagasse is commonly combusted to generate energy. Unfortunately, recycling strategies rarely consider the resulting ash as a potential fertilizer. To evaluate this recycling strategy for a sustainable circular economy, we characterized bagasse ash as a fertilizer and measured the effects of co-gasification and co-combustion of bagasse with either chicken manure or sewage sludge: on the phosphorus (P) mass fraction, P-extractability, and mineral P phases. Furthermore, we investigated the ashes as fertilizer for soybeans under greenhouse conditions. All methods in combination are reliable indicators helping to assess and predict P availability from ashes to soybeans. The fertilizer efficiency of pure bagasse ash increased with the ash amount supplied to the substrate. Nevertheless, it was not as effective as fertilization with triple-superphosphate and K2SO4, which we attributed to lower P availability. Co-gasification and co-combustion increased the P mass fraction in all bagasse-based ashes, but its extractability and availability to soybeans increased only when co-processed with chicken manure, because it enabled the formation of readily available Ca-alkali phosphates. Therefore, we recommend co-combusting biomass with alkali-rich residues to increase the availability of P from the ash to plants. KW - Combustion and gasification KW - Phosphate extractability and availability KW - X-ray diffraction (XRD) PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567632 DO - https://doi.org/10.3389/fpls.2022.1041924 SN - 1664-462X VL - 13 SP - 1 EP - 13 PB - Frontiers Media CY - Lausanne AN - OPUS4-56763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Adam, Christian A1 - Herzel, Hannes A1 - Stemann, Jan A1 - Hermann, Ludwig A1 - Krüger, Oliver T1 - A thermochemical process for fertilizer production from sewage sludge ashes investigated from lab to industrial scale N2 - Sewage sludge ashes (SSA) contain up to 13% P and are thus promising raw materials for fertilizer production. However, SSAs also contain heavy metals and the main P-bearing mineral phases whitlockite and aluminium phosphate are poorly bioavailable. We developed and patented a process that produces fertilizers from SSA addressing the above mentioned challenges. SSA is thermo-chemically treated at ~950°C under reducing conditions (reductive: dry sewage sludge) in a rotary kiln together with an alkali compound such as sodium or potassium sulfate, hydroxide or carbonate. Some undesired trace elements such as As, Hg, Pb and Cd are evaporated and separated via off gas treatment system. The poorly soluble phosphates are transformed into calcium alkali phosphates (CaNaPO4 or CaKPO4) that are not water soluble but completely soluble in neutral ammonium citrate solution (NAC). Pot experiments showed that the fertilizer performance of the treated SSA containing calcium alkali phosphates as the single P-bearing mineral phase was comparable to the performance of triple superphosphate. The PNAC-solubility of fertilizer products correlated very well with the resulting contents of calcium alkali phosphates and the P-uptake of plants in pot experiments. The effect of the ratio alkali/P on the PNAC-solubility was investigated by crucible experiments and trial series with a medium scale rotary kiln using different SSAs and alkali phosphates. The effects of operational parameters such as the temperature and the retention time were investigated as well as concurring side reactions of the alkali compounds e.g. with SiO2 present in SSA. The alkali/P ratio must be roughly adjusted at 2 to achieve 100% PNAC-solubility for a common type of SSA. A demonstration trial with an output of 2 t recycling fertilizer was carried out in an industrial rotary kiln (product output 30 kg/h). The PNAC-solubility of the product varied between 60% and 80% during the 4 days campaign showing that the transformation of the mineral P-phases to calcium alkali phosphates was not complete. This was observed although the amount of Na2SO4 additive was dosed according to the results of the pre-investigations. Structure analysis by XRD showed that besides the target compound CaNaSO4 also some Ca3(PO4)2 remained in the SSA as well as some unreacted Na2SO4 additive. Obviously, the conditions in the industrial rotary kiln were not optimal for the process showing that some process aspects have to be reconsidered for the scale-up. T2 - IPW8 - 8th International Phosphorus Workshop CY - Rostock, Germany DA - 12.09.2016 KW - Sewage sludge ash KW - Thermochemical treatment KW - Phosphorus recovery PY - 2016 AN - OPUS4-37375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huber, F. A1 - Herzel, Hannes A1 - Adam, Christian A1 - Mallow, O. A1 - Blasenbauer, D. A1 - Fellner, J. T1 - Combined disc pelletisation and thermal treatment of MSWI fly ash N2 - An environmentally friendly and cost efficient way for the management of municipal solid waste incineration (MSWI) fly ash represents its thermal co-treatment together with combustible waste. However, the safe introduction and storage of MSWI fly ash in the waste bunker is challenging and associated with severe problems (e.g. dust emissions, generation of undefined lumps and heat in case of moistened MSWI fly ash). Therefore, the aim of this study is to investigate the suitability of pelletisation as a pretreatment of MSWI fly ash. In particular, MSWI fly ash was characterised after sampling, pelletisation and thermal treatment and the transfer of constituents to secondary fly ash and flue gas was investigated. For this purpose, MSWI fly ash pellets with a water content of about 0.15 kg/kg and a diameter of about 8 mm have been produced by disc pelletiser and treated in an electrically heated pilot-scale rotary kiln at different temperatures, ranging from 450°C to 1050°C. The total contents of selected elements in the MSWI fly ash before and after thermal treatment and in the generated secondary fly ash have been analysed in order to understand the fate of each element. Furthermore, leachable contents of selected elements and total content of persistent organic pollutants of the thermally treated MSWI fly ash were determined. Due to the low total content of Hg (0.7 mg/kg) and the low leachate content of Pb (<0.36 mg/kg), even at the lowest treatment temperature of 450°C, thermally treated MSWI fly ash pellets can be classified as nonhazardous waste. However, temperatures of at least 650°C are necessary to decrease the toxic equivalency of PCDD/F and DL-PCB. The removal of toxic heavy metals like Cd and Pb is significantly improved at temperatures of 850°C, 950°C or even 1050°C. The observed metal removal led to relatively high contents of e.g. Cu (up to 11,000 mg/kg), Pb (up to 91,000 mg/kg) and Zn (up to 21,000 mg/kg) in the secondary fly ash. This metal enriched secondary fly ash might represent a potential raw material for metal recovery (e.g. via acidic leaching). Due to the high content of total dissolved solids observed in the leachate of thermally treated MSWI fly ash pellets, a wet extraction procedure is suggested to enable its safe disposal at non-hazardous waste landfills. KW - MSWI fly ash KW - Thermal treatment PY - 2018 DO - https://doi.org/10.1016/j.wasman.2017.12.020 SN - 0956-053X VL - 73 SP - 381 EP - 391 PB - Elsevier Ltd. CY - Rotterdam AN - OPUS4-44481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herzel, Hannes A1 - Stemann, J. A1 - Simon, Sebastian A1 - Adam, Christian T1 - Comparison of thermochemical treatment of sewage sludge ash with sodium sulphate in laboratory-scale and pilot-scale experiments N2 - There is an ongoing debate on European scale concerning the criticality of phosphorus. In Switzerland and Germany, phosphorus recovery from phosphorus-rich waste streams will become obligatory. Sewage sludge ash is rich in phosphorus and may become an important secondary feedstock. Thermochemical treatment of sewage sludge ash with sodium sulphate under reducing conditions was shown to remove heavy metals from the solid product and produce the fully plant available crystalline phase CaNaPO4. Pilot-scale experiments in a rotary kiln were carried out at temperatures between 750 and 1000 °C and were compared to laboratory-scale experiments with crucibles. Process upscaling was successfully demonstrated but a series of differences were noticed: In comparison to laboratory-scale, solubility of phosphorus in samples from pilot-scale experiments was lower at all chosen treatment temperatures because of shorter retention time and incomplete decomposition of sodium sulphate. X-ray diffraction analysis revealed remaining phase fractions of whitlockite (Ca3-x(Mg,Fe)x(PO4)2) and sodium sulphate from the starting materials in products and thus indicated incomplete reaction. In contrast to the results of laboratory-scale experiments, the crystalline phase CaNaPO4 was clearly absent in the products from the rotary kiln but instead a Mg-bearing phase (Ca,Mg)NaPO4 was formed. Laboratory-scale experiments confirmed (Ca,Mg)NaPO4 is an intermediate phase between whitlockite and CaNaPO4. However, both crystalline phases are characterized by high plant availability. It was shown that heavy metal removal increased at higher temperatures whereas solubility and thus plant availability of phosphorus already reached its maxima at temperatures of 950 °C in pilot-scale and 875 °C in laboratory-scale experiments. KW - Crystalline phase identification KW - Heavy metal removal KW - Phosphorus availability KW - Process upscaling KW - Recovery KW - Rhenanite PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-524084 DO - https://doi.org/10.1007/s13762-021-03252-y VL - 19 IS - 3 SP - 1997 EP - 2006 PB - Springer AN - OPUS4-52408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Adam, Christian A1 - Eicher, N. A1 - Hermann, L. A1 - Herzel, Hannes A1 - Mallon, J. A1 - Schaaf, M. A1 - Stemann, J. T1 - Comparative review of ash processes N2 - This report gives technological information about processes for the recovery of phosphorus from sewage sludge ash including mass- and energy balance, process conditions and product quality. The information in this report aim at giving an overview on different concepts for the recovery of phosphorus from sewage sludge ash and are intended to allow a general qualitative comparison between the different technical approaches. This report also describes the technological backgrounds of the processes that were furthermore investigated by life cycle assessment (LCA) and life cycle cost (LCC) analysis. However, most process data stated in this report are site specific data. The LCA/LCC study includes the definition of a common base line for all processes, detailed process modeling and plausibility assessments. Results of the LCA/LCC-studies are reported in deliverables D9.2 und D10.1. PY - 2015 UR - http://p-rex.eu/uploads/media/P-REX_D4_1_Comparative_review_of_ash_processes.pdf SP - 1 EP - 30 AN - OPUS4-34858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herzel, Hannes A1 - Krüger, Oliver A1 - Hermann, L. A1 - Adam, Christian T1 - Sewage sludge ash - A promising secondary phosphorus source for fertilizer production N2 - Sewage sludge incineration is extensively practiced in some European countries such as the Netherlands, Switzerland, Austria and Germany. A survey of German sewage sludge ash showed that the recovery potential is high, approx. 19,000 t of phosphorus per year. However, the survey also discovered that the bioavailability of phosphorus in the sewage sludge ash is poor and that more than half of the ashes cannot be used as fertilizers due to high heavy metal content. A new thermochemical process for sewage sludge ash treatment was developed that transforms the ash into marketable fertilizer products. Sewage sludge ash was thermochemically treated with sodium and potassium additives under reducing conditions, whereby the phosphate-bearing mineral phases were transformed into plant available phosphates. High P-bioavailability was achieved with a molar Na/P ratio > 1.75 in the starting materials. Sodium sulfate, carbonate and hydroxide performed comparably as additives for this calcination process. Potassium carbonate and -hydroxide have to be added in a molar K/P ratio > 2.5 to achieve comparable P-solubility. The findings of the laboratory scale investigations were confirmed by an industrial demonstration trial for an ash treatment with sodium sulfate. Simultaneously, the volatile transition metal arsenic (61% removal) as well as volatile heavy metals such as cadmium (80%), mercury (68%), lead (39%) and zinc (9%) were removed via the off-gas treatment system. The product of the demonstration trial is characterized by high bioavailability and a toxic trace element mass fraction below the limit values of the German fertilizer ordinance, thus fulfilling the quality parameters for a P-fertilizer. KW - Sewage sludge ash KW - Phosphorus recovery KW - Thermochemical treatment KW - Reducing conditions KW - Heavy metal evaporation KW - Bioavailability KW - Sodium sulfate PY - 2016 DO - https://doi.org/10.1016/j.scitotenv.2015.08.059 SN - 0048-9697 SN - 1879-1026 IS - 542 SP - 1136 EP - 1143 PB - Elsevier CY - Amsterdam AN - OPUS4-34165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herzel, Hannes A1 - Krüger, Oliver A1 - Adam, Christian T1 - Phosphorus fertilizer from sewage sludge ashes by thermochemical treatment - Benefits and challenges N2 - Mineral phosphorus (P) fertilizers are solely produced from phosphate rock. Europe completely depends on imports since there are no relevant phosphate rock deposits on the continent. Furthermore, phosphate rock is contaminated with heavy metals such as Cd and U that pollute the farmlands and pose environmental risks. Sewage sludge ash (SSA) might be a promising source for recycling fertilizer since it contains large amounts of P (up to 13 %). However, fertilizer from SSA has to comply with the respective ordinances, particularly the heavy metal limit values stated in the fertilizer ordinance, and requires sufficient P bioavailability. Thus, we conducted a complete survey of SSA from German mono-incineration facilities and developed a thermochemical treatment for SSA to reduce toxic elements and increase P bioavailability. T2 - RAMIRAN 2015 - 16th International conference Rural-Urban Symbiosis CY - Hamburg, Germany DA - 08.09.2015 PY - 2015 SN - 978-3-941492-95-0 SP - TA EP - O_20, 33 AN - OPUS4-34311 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Adam, Christian A1 - Herzel, Hannes T1 - Recycling of nutrients from biomass ashes N2 - Recycling of nutrients from biomass ashes can safe natural recources and improve agricultural Efficiency. This was shown in the presentation for sewage sludge ashes, chicken manure ash and for sugar cane plants. T2 - 6° Enconto Brasileiro-Alemao para Producao Sustentavel no Cerrado CY - Goiania, Brazil DA - 19.09.2016 KW - Nutrient recovery PY - 2016 AN - OPUS4-37599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maresca, A. A1 - Krüger, O. A1 - Herzel, Hannes A1 - Adam, Christian A1 - Kalbe, Ute A1 - Astrup, T. F. T1 - Influence of wood ash pre-treatment on leaching behaviour, liming and fertilising potential N2 - In Denmark, increasing amounts of woody biomass are being used for the production of renewable energy, resulting in more wood ashes being generated. While these materials have been mainly landfilled, wood ashes may also be utilised for fertilizing and liming purposes on top of soils. Pre-treatments involving hardening or granulation may be carried out prior to soil application. In this study, two Danish wood ash samples were hardened and/or granulated. Lab-hardening induced rapid changes in the shape of the acid neutralisation capacity curve of the ashes. Up-flow column tests, assuming local equilibrium conditions, were employed to investigate the leaching from pre-treated ashes. Granules and loose ashes demonstrated similar leaching behaviours, indicating that similar geochemical processes were governing their leaching. In comparison with untreated fresh ashes, the hardened ashes demonstrated reduced leaching of Ca, Ba, Pb and Zn with concentration levels generally below or close to the analytical limits of quantification; to the contrary, the leaching of As, P, Sb, Si, V and Mg was enhanced in the hardened ashes. The release of alkalinity was reduced by hardening. In general, all granules were barely breakable by finger-pinching and they could withstand one month of continuous leaching, preserving their overall shape. The solubility of phosphorous in neutral ammonium citrate indicated that about 30–51% of the total P content in the ash samples was released, suggesting that the ashes could be potentially valuable as P-fertiliser if applied onto soil. KW - Wood ash KW - Phoshpor availability KW - Leaching KW - Forest soils PY - 2019 DO - https://doi.org/10.1016/j.wasman.2018.11.003 SN - 0956-053X VL - 83 SP - 113 EP - 122 PB - Elsevier AN - OPUS4-46583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Simon, Franz-Georg A1 - Kalbe, Ute A1 - Adam, Christian A1 - Adamczyk, Burkart A1 - Weimann, Karin T1 - Recovery of non-renewable resources from waste T2 - 7th International Conference on EcoBalance CY - Tsukuba, Japan DA - 2006-11-14 KW - Natural resources KW - Thermo-chemical treatment KW - Waste management KW - Sewage sludge KW - Aggregetes PY - 2006 IS - E2-4 SP - 499 EP - 502 PB - The Society of Non-Traditional Technology CY - Tsukuba, Japan AN - OPUS4-14115 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Adam, Christian A1 - Brenneis, Rudolf A1 - Adamczyk, Burkart A1 - Simon, Franz-Georg T1 - Recycling of waste materials by thermochemical treatment T2 - ISWA World congress 2010 - Urban development and sustainbility - a major challenge for waste management in the 21st century CY - Hamburg, Germany DA - 2010-11-15 KW - thermochemical substance separation KW - Thermodynamics KW - Thermochemistry PY - 2010 SP - 1 EP - 10(?) AN - OPUS4-22467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Adam, Christian A1 - Kley, Gerd A1 - Simon, Franz-Georg A1 - Lehmann, Annekatrin ED - Filibeli, A. ED - F. Dilek Sanin, ED - Ayol, A. ED - Selim L. Sanin, T1 - Recovery of nutrients from sewage sludge - Results of the European research-project SUSAN T2 - IWA-Specialist Conference "Facing Sludge Diversities: Challenges, Risks and Opportunities" CY - Antalya, Turkey DA - 2007-03-28 KW - Phosphorus recovery KW - Sewage sludge ash KW - Thermo-chemical treatment KW - Fertiliser PY - 2007 N1 - Serientitel: Journal of environmental science and health : Part A, Toxic/hazardous substances & environmental engineering – Series title: Journal of environmental science and health : Part A, Toxic/hazardous substances & environmental engineering IS - 43.2008,13 SP - 297 EP - 305 PB - Taylor & Francis CY - Philadalphia, PA AN - OPUS4-16468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -