TY - CONF A1 - Adam, Christian A1 - Kley, Gerd A1 - Simon, Franz-Georg T1 - Thermal treatment of municipal sewage sludge aiming at marketable P-fertilisers T2 - The 8th International Conference of Eco-Materials-ICEM8 CY - London, England DA - 2007-07-09 PY - 2007 AN - OPUS4-15038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adam, Christian A1 - Kley, Gerd A1 - Simon, Franz-Georg A1 - Lehmann, Annekatrin T1 - Recovery of nutrients from sewage sludge - Results of the European research-project SUSAN N2 - Municipal sewage sludge is a carrier of nutrients – most important phosphorus (P) – but also contains organic pollutants and heavy metals. A two steps thermal treatment based on 1. mono-incineration of sewage sludge under destruction of organic pollutants and 2. thermochemical treatment of the resulting ashes to remove heavy metals and increase P-bioavailability is suggested by the authors. The process aims at P-fertilisers production from sewage sludge. Seven sewage sludge ashes of different origin and composition and one residue from gasification of sewage sludge were thermochemically treated. The raw ashes were mixed with a chlorine donor (e.g. MgCl2) and thermally treated in a gas tight lab-scale rotary furnace. The distributions of the heavy metals between solid and gas phase were determined. The heavy metals concentrations of the treated ashes matched the legislative limits in most cases. The products from thermochemical treatment are suited raw materials for P-fertiliser production. Relevant process parameters such as temperature, type and concentration of Cl-donor and retention time were optimised for the thermochemical treatment step. KW - Phosphorus recovery KW - Sewage sludge ash KW - Thermochemical treatment KW - Fetiliser PY - 2008 DO - https://doi.org/10.2166/wpt.2008.001 SN - 1751-231X VL - 3 IS - 1 SP - 1 EP - 8 PB - IWA Publishing AN - OPUS4-17700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Adam, Christian A1 - Kley, Gerd A1 - Simon, Franz-Georg ED - Wang, B. ED - J.H. Song, ED - H. Abe, T1 - Thermal treatment of municipal sewage sludge aiming at marketable P-fertilisers T2 - 8th International Conference on Eco-materials (ICEM8 2007) CY - London, UK DA - 2007-07-09 KW - Sewage sludge KW - Mono-incineration KW - Ash treatment KW - Thermo-chemical treatment KW - P-fertiliser PY - 2007 SN - 978-1-902316-54-3 VL - 2 SP - 435 EP - 442 PB - Brunel University Press CY - London, UK AN - OPUS4-16470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adam, Christian A1 - Peplinski, Burkhard A1 - Michaelis, Matthias A1 - Kley, Gerd A1 - Simon, Franz-Georg T1 - Thermochemical treatment of sewage sludge ashes for phosphorus recovery N2 - Phosphorus (P) is an essential element for all living organisms and cannot be replaced. Municipal sewage sludge is a carrier of phosphorus, but also contains organic pollutants and heavy metals. A two-step thermal treatment is suggested, including mono-incineration of sewage sludge and subsequent thermochemical treatment of the ashes. Organic pollutants are completely destroyed by mono-incineration. The resulting sewage sludge ashes contain P, but also heavy metals. P in the ashes exhibits low bioavailability, a disadvantage in farming. Therefore, in a second thermochemical step, P is transferred into mineral phases available for plants, and heavy metals are removed as well. The thermochemical treatment was investigated in a laboratory-scale rotary furnace by treating seven different sewage sludge ashes under systematic variation of operational parameters. Heavy metal removal and the increase of the P-bioavailability were the focus of the investigation. The present experimental study shows that these objectives have been achieved with the proposed process. The P-bioavailability was significantly increased due to the formation of new mineral phases such as chlorapatite, farringtonite and stanfieldite during thermochemical treatment. KW - P-recovery KW - Sewage sludge ash KW - Thermochemical treatment KW - Mineral phases KW - X-ray diffraction PY - 2009 DO - https://doi.org/10.1016/j.wasman.2008.09.011 SN - 0956-053X VL - 29 IS - 3 SP - 1122 EP - 1128 PB - Pergamon Press CY - New York, NY AN - OPUS4-18605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peplinski, Burkhard A1 - Adam, Christian A1 - Michaelis, Matthias A1 - Kley, Gerd A1 - Emmerling, Franziska A1 - Simon, Franz-Georg T1 - Reaction sequences in the thermochemical treatment of sewage sludge ashes revealed by X-ray powder diffraction - A contribution to the European project SUSAN N2 - The sequence of reactions accompanying the thermochemical treatment of an iron- and aluminium-bearing sewage sludge ash was ascertained by investigating two systematic series of samples. The ash was thermochemically treated in a lab-scale rotary furnace after mixing it with a chlorine-donor, either CaCl2 or MgCl2. Within each of these two sample series only a single process parameter, the reaction temperature, was varied, namely between 350 and 1050°C. It was found, that among the numerous crystalline phases present in the raw ash only quartz and hematite continue to exist after thermochemical treatments carried out at 1050°C, whereas all other components undergo at least one decomposition-recrystallization cycle. Some of the components re-crystallize even several times. It was proved that the restructuring of the calcium- and phosphorus-bearing mineral phases proceeds via the formation of chlorspodioside, Ca2PO4Cl. The influence of the type of chlorine-donor on the final product was elucidated in detail and - to the best of our knowledge - for the first time crystalline AlPO4 was found in a sewage sludge ash and its decomposition was investigated, too. KW - XRD KW - Phosphorus recovery KW - Sewage sludge ash KW - Urban mining KW - Fertilizers PY - 2009 DO - https://doi.org/10.1524/zksu.2009.0068 SN - 0930-486X VL - 30 EPDIC 2008 SP - 459 EP - 464 PB - Oldenbourg CY - München AN - OPUS4-20562 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herzel, Hannes A1 - Grevel, K.-D. A1 - Emmerling, Franziska A1 - Dachs, E. A1 - Benisek, A. A1 - Adam, Christian A1 - Majzlan, J. T1 - Thermodynamic properties of calcium alkali phosphates Ca(Na,K)PO4 N2 - Calcium alkali phosphates Ca(Na,K)PO4 are main constituents of bioceramics and thermochemically produced phosphorus fertilizers because of their bioavailability. Sparse thermodynamic data are available for the endmembers CaNaPO4 and CaKPO4. In this work, the missing data were determined for the low-temperature phase modifications of the endmembers CaNaPO4 and CaKPO4 and three intermediate Ca(Na,K)PO4 compositions. Standard enthalpy of formation ranges from - 2018.3 ± 2.2 kJ mol-1 to - 2030.5 ± 2.1 kJ mol-1 and standard entropy from 137.2 ± 1.0 J mol-1 K-1 to 148.6 ± 1.0 J mol-1 K-1 from sodium endmember b-CaNaPO4 to potassium endmember b0-CaKPO4. Thermodynamic functions are calculated up to 1400 K for endmembers and the sodium-rich intermediate phase b-Ca(Na0.93K0.07)PO4. Functions above 640 K are extrapolated because of the phase transition from low- to high-temperature phase. Impurities in the synthesized intermediate phases c-Ca(Na0.4K0.6)PO4 and c-Ca Na0.35K0.65)PO4 and one additional phase transition around 500 K impeded the determination of high-temperature thermodynamic functions. In general, data for phase transition temperatures agree with the previously reported phase diagrams. KW - Formation enthalpy KW - Heat capacity KW - Phase transformation KW - Bioceramics KW - Phosphorus fertilizer KW - Entropy PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-507640 DO - https://doi.org/10.1007/s10853-020-04615-5 VL - 55 SP - 8477 EP - 8490 PB - Springer AN - OPUS4-50764 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Adam, Christian A1 - Herzel, Hannes T1 - Phosphorus recovery in Germany – recent developments N2 - The recent developments of phosphorus recovery in Germany were presented. The funding program RePhoR was introduced with focus on the demonstration project R-Rhenania that is coordinated by BAM. T2 - Green Deal 2020 conference CY - Online-Meeting DA - 14.12.2020 KW - Phopshorus recovery KW - Waste water treatment KW - Recycling fertiliser PY - 2020 AN - OPUS4-51837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dombinov, V. A1 - Herzel, Hannes A1 - Meiller, M. A1 - Müller, F. A1 - Willbold, S. A1 - Zang, J. W. A1 - da Fonseca-Zang, W. A. A1 - Adam, Christian A1 - Klose, H. A1 - Poorter, H. A1 - Jablonowski, N. D. A1 - Schrey, S. D. T1 - Sugarcane bagasse ash as fertilizer for soybeans: Effects of added residues on ash composition, mineralogy, phosphorus extractability and plant availability N2 - Sugarcane bagasse is commonly combusted to generate energy. Unfortunately, recycling strategies rarely consider the resulting ash as a potential fertilizer. To evaluate this recycling strategy for a sustainable circular economy, we characterized bagasse ash as a fertilizer and measured the effects of co-gasification and co-combustion of bagasse with either chicken manure or sewage sludge: on the phosphorus (P) mass fraction, P-extractability, and mineral P phases. Furthermore, we investigated the ashes as fertilizer for soybeans under greenhouse conditions. All methods in combination are reliable indicators helping to assess and predict P availability from ashes to soybeans. The fertilizer efficiency of pure bagasse ash increased with the ash amount supplied to the substrate. Nevertheless, it was not as effective as fertilization with triple-superphosphate and K2SO4, which we attributed to lower P availability. Co-gasification and co-combustion increased the P mass fraction in all bagasse-based ashes, but its extractability and availability to soybeans increased only when co-processed with chicken manure, because it enabled the formation of readily available Ca-alkali phosphates. Therefore, we recommend co-combusting biomass with alkali-rich residues to increase the availability of P from the ash to plants. KW - Combustion and gasification KW - Phosphate extractability and availability KW - X-ray diffraction (XRD) PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567632 DO - https://doi.org/10.3389/fpls.2022.1041924 SN - 1664-462X VL - 13 SP - 1 EP - 13 PB - Frontiers Media CY - Lausanne AN - OPUS4-56763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -