TY - CONF A1 - Adam, Christian A1 - Suhendra, Suhendra A1 - Vogel, Christian A1 - Krüger, Oliver A1 - Tetzlaff, K. T1 - Production of marketable multi-nutrient fertilisers from different biomass ashes and industrial by-products N2 - Sewage sludge ashes (SSA) contain considerable mass fractions of phosphorus (5-10 w-% P) suitable for fertiliser production. Unfortunately, also most of the heavy metals remain in the ashes. A thermochemical process was developed for the treatment of SSA to i) remove heavy metals and ii) transform phosphates into bio-available mineral phases. The technology was already demonstrated in technical scale (capacity of 300 kg/h) and the company OUTOTEC is currently planning the first industrial plant. In order to manufacture a marketable multi-nutrient fertiliser from the thermochemically treated SSA further wastes and industrial by-products were taken into account. Ammonium sulphate occurs as a by-product of the caprolactam production and was chosen as N-carrier (21 w-% N). Straw ash was tested as potassium carrier (11-15 w-% K). Granulation campaigns were carried out with intensive mixers in lab-, medium-and technical scale. NPS-and NPKS-fertilisers were produced that were characterised by suitable particle size distributions and strength. T2 - ASH Utilisation 2012 CY - Stockholm, Sweden DA - 25.01.2012 KW - Sewage sludge ash KW - Recycling fertiliser KW - Heavy metals KW - Thermochemical treatment KW - Bioavailability PY - 2012 SP - 1 EP - 7 CY - Stockholm, Sweden AN - OPUS4-25496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Krüger, Oliver A1 - Adam, Christian T1 - Thermochemical treatment of sewage sludge ash with sodium additives under reducing conditions analyzed by thermogravimetry N2 - Phosphorus (P) for fertilizer use can be recovered from sewage sludge ash (SSA). To enhance the bioavailability of P and reduce the heavy metal content of SSA, it can be treated thermochemically with Na2CO3 or Na2SO4 at 950 °C in a rotary kiln using dry sewage sludge or lignite as reducing agent. These processes were investigated by thermogravimetry/differential thermal analysis coupled with gas analysis. Reducing conditions in this experimental setup were provided by 2 % hydrogen in the Ar carrier gas. During SSA + Na2CO3 treatment CO2, CO and water were detected in the off-gas. During SSA + Na2SO4 treatment SO2, some CO2 and water were detected. Heavy metal removal was more efficient for SSA + Na2CO3 compared to the sulfate variant. A SSA + Na2SO4 + lignite variant which also formed CO shifted the heavy metal removal to the results obtained with Na2CO3 which was obviously due to the additional reduction potential. However, Zn evaporation was not achieved with the Na2SO4 variants which were most probably due to immobilization as ZnS. KW - Phosphorus recovery KW - Thermochemical treatment KW - Sewage sludge ash KW - Reducing conditions KW - Heavy metal evaporation KW - FT-IR gas analysis PY - 2016 U6 - https://doi.org/10.1007/s10973-015-5016-z SN - 1388-6150 SN - 1418-2874 SN - 0368-4466 SN - 1572-8943 VL - 123 IS - 2 SP - 1045 EP - 1051 PB - Springer CY - Dordrecht AN - OPUS4-34556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Herzel, Hannes A1 - Dombinov, V. A1 - Vogel, Christian A1 - Willbold, S. A1 - Levandowski, G. V. A1 - Meiller, M. A1 - Müller, F. A1 - Zang, J. W. A1 - da Fonseca-Zang, W. A. A1 - Jablonowski, N. D. A1 - Schrey, S. D. A1 - Adam, Christian T1 - Soybean Fertilized by P-Phases from Bagasse-Based Materials: P-Extraction Procedures, Diffusive Gradients in Thin Films (DGT), and X-ray Diffraction Analysis (XRD) N2 - The Brazilian sugarcane industry produced around 173 million tons (Mt) of bagasse in 2018. Bagasse is a by-product of juice extraction for ethanol and sugar production and is combusted in order to generate power, producing up to 10 Mt of ash per year. This ash contains various concentrations of plant nutrients, which allow the ash to be used as a crop fertilizer. However, the concentration and extractability of phosphorus (P), an essential plant nutrient, are low in bagasse ash. To increase the P content, we co-gasified and co-combusted bagasse with P-rich chicken manure. The resulting ash was thermochemically post-treated with alkali additives (Na2SO4 and K2SO4) to increase the availability of P to plants. We aimed to: (i) investigate the effect of thermochemical post-treatment of co-gasification residue and co-combustion ash on P availability to soybeans, (ii) explore the potential of chemical extraction methods (citric acid, neutral ammonium citrate, formic acid, and Mehlich-I) and diffusive gradients in thin films (DGT) to predict the availability of P to soybeans, and (iii) identify the responsible P-phases using X-ray diffraction . We evaluated P availability to soybeans growing in Brazilian Oxisol soil in two independent greenhouse pot experiments. The positive effect of thermochemical treatment on P availability from gasification residue was confirmed through the observation of increased P uptake and biomass in soybean plants. These findings were confirmed by chemical extraction methods and DGT. The gasification residue contained whitlockite as its main P-bearing phase. Thermochemical post-treatment converted whitlockite into highly soluble CaNaPO4. In contrast, co-combustion ash already contained highly soluble Ca(Na,K)PO4 as its main P-bearing phase, making thermochemical post-treatment unnecessary for increasing P availability. In conclusion, increased extractability and availability of P for soybeans were closely connected to the formation of calcium alkali phosphate. Our findings indicate that this combined methodology allows for the prediction of P-fertilization effects of ash. KW - Sugar cane bagasse KW - Chicken manure ash KW - Thermochemical treatment KW - Nutrient KW - Plant availability PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-509735 VL - 10 SP - 895 EP - 6 PB - MDPI AN - OPUS4-50973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steckenmesser, D. A1 - Vogel, Christian A1 - Adam, Christian A1 - Steffens, D. T1 - Effect of various types of thermochemical processing of sewage sludges on phosphorus speciation, solubility, and fertilization performance N2 - Sewage sludge has one of the highest phosphorus (P) recovery potentials of all waste materials. Therefore, P-recycling from sewage sludge could contribute to closing the P-cycle. Recently, various thermal processes for P-recovery have been developed, but there is still a demand for information on the effect of different process parameters (e.g. additives and temperature) on P-speciation and especially on the fertilization performance. In the present study, two common methods (low-temperature conversion at 400–500 °C and thermochemical treatment at 950 °C) were investigated and combined to produce highly bioavailable P-fertilizers from two different types of sewage sludge based on chemical phosphorus precipitation (Chem-P) and enhanced biological phosphorus removal (Bio-P). The results of P-fractionation, X-ray diffraction analysis, and pot experiments with maize showed that Bio-P sludges attain high P-plant-availability after treatment at low temperatures (400 °C). In contrast, Chem-P sludges can adequately be treated at higher temperatures under reductive conditions with sodium additives to form highly bioavailable calcium-sodium-phosphate. Additionally, also highly heavy-metal contaminated sludges can be thermochemically treated at high temperatures to achieve the legal requirements for fertilizers. KW - P-recovery KW - Low-temperature-conversion KW - Thermochemical treatment KW - P-fractionation KW - P-plant-availability KW - Sewage sludge PY - 2017 U6 - https://doi.org/10.1016/j.wasman.2017.02.019 SN - 0956-053X VL - 62 SP - 194 EP - 203 AN - OPUS4-39907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steckenmesser, D. A1 - Vogel, Christian A1 - Adam, Christian A1 - Steffens, D. T1 - Effect of various types of thermochemical processing of sewage sludges on phosphorus speciation, solubility, and fertilization performance N2 - Sewage sludge has one of the highest phosphorus (P) recovery potentials of all waste materials. Therefore, P-recycling from sewage sludge could contribute to closing the P-cycle. Recently, various thermal processes for P-recovery have been developed, but there is still a demand for information on the effect of different process parameters (e.g. additives and temperature) on P-speciation and especially on the fertilization performance. In the present study, two common methods (low-temperature conversion at 400–500° C and thermochemical treatment at 950° C) were investigated and combined to produce highly bioavailable P-fertilizers from two different types of sewage sludge based on chemical phosphorus precipitation (Chem-P) and enhanced biological phosphorus removal (Bio-P). The results of P-fractionation, X-ray diffraction analysis, and pot experiments with maize showed that Bio-P sludges attain high P-plant-availability after treatment at low temperatures (400° C). In contrast, Chem-P sludges can adequately be treated at higher temperatures under reductive conditions with sodium additives to form highly bioavailable calcium-sodium-phosphate. Additionally, also highly heavy-metal contaminated sludges can be thermochemically treated at high temperatures to achieve the legal requirements for fertilizers. KW - P-recovery KW - Low-temperature-conversion KW - Thermochemical treatment KW - P-fractionation KW - P-plant-availability KW - Sewage sludge PY - 2017 U6 - https://doi.org/10.1016/j.wasman.2017.02.019 SN - 0956-053X VL - 62 SP - 194 EP - 203 PB - Elsevier CY - Amsterdam AN - OPUS4-41646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adam, Christian A1 - Kley, Gerd A1 - Simon, Franz-Georg T1 - Thermal treatment of municipal sewage sludge aiming at marketable P-fertilisers N2 - Municipal sewage sludge is a carrier of nutrients – most important phosphorus (P) – but also contains organic pollutants and heavy metals. A two steps thermal treatment is suggested based on 1. mono-incineration of sewage sludge under destruction of organic pollutants and 2. thermochemical treatment of the resulting ashes to remove heavy metals and increase P-bioavailability. The targeted products are marketable P-fertilisers. The thermochemical treatment was investigated in a gas tight lab-scale rotary furnace. Seven sewage sludge ashes of different origin and composition and one residue from gasification of sewage sludge were mixed with a chlorine donor (e.g. MgCl2) and thermochemically treated under systematic variation of operational parameters. The distributions of the heavy metals between solid and gas phase were determined. The heavy metals concentrations of the treated ashes met the legislative limits in most cases. The products from thermochemical treatment are suited raw materials for P-fertiliser production. Relevant process parameters such as temperature, type and concentration of Cl-donor and retention time were optimised for the thermochemical treatment step. KW - Sewage sludge KW - Mono-incineration KW - Ash treatment KW - Thermochemical treatment KW - Phosphorus-fertiliser PY - 2007 SN - 1345-9678 SN - 1347-5320 VL - 48 IS - 12 SP - 3056 EP - 3061 PB - Japan Institute of Metals CY - Sendai AN - OPUS4-16647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Adam, Christian A1 - Schick, J. A1 - Kratz, S. A1 - Hermann, L. T1 - Phosphorus recovery by thermochemical treatment of sewage sludge ash T2 - 5th IWA Leading-Edge Conference on Water and Wastewater Technologies CY - Zürich, Switzerland DA - 2008-06-01 KW - Phosphorus recovery KW - Sewage sludge ash KW - Thermochemical treatment KW - Fertiliser KW - Greenhouse pot experiments PY - 2008 SP - 1 EP - 10 PB - International Water Association (IWA) CY - London AN - OPUS4-17568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adam, Christian A1 - Kley, Gerd A1 - Simon, Franz-Georg A1 - Lehmann, Annekatrin T1 - Recovery of nutrients from sewage sludge - Results of the European research-project SUSAN N2 - Municipal sewage sludge is a carrier of nutrients – most important phosphorus (P) – but also contains organic pollutants and heavy metals. A two steps thermal treatment based on 1. mono-incineration of sewage sludge under destruction of organic pollutants and 2. thermochemical treatment of the resulting ashes to remove heavy metals and increase P-bioavailability is suggested by the authors. The process aims at P-fertilisers production from sewage sludge. Seven sewage sludge ashes of different origin and composition and one residue from gasification of sewage sludge were thermochemically treated. The raw ashes were mixed with a chlorine donor (e.g. MgCl2) and thermally treated in a gas tight lab-scale rotary furnace. The distributions of the heavy metals between solid and gas phase were determined. The heavy metals concentrations of the treated ashes matched the legislative limits in most cases. The products from thermochemical treatment are suited raw materials for P-fertiliser production. Relevant process parameters such as temperature, type and concentration of Cl-donor and retention time were optimised for the thermochemical treatment step. KW - Phosphorus recovery KW - Sewage sludge ash KW - Thermochemical treatment KW - Fetiliser PY - 2008 U6 - https://doi.org/10.2166/wpt.2008.001 SN - 1751-231X VL - 3 IS - 1 SP - 1 EP - 8 PB - IWA Publishing AN - OPUS4-17700 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adam, Christian A1 - Peplinski, Burkhard A1 - Michaelis, Matthias A1 - Kley, Gerd A1 - Simon, Franz-Georg T1 - Thermochemical treatment of sewage sludge ashes for phosphorus recovery N2 - Phosphorus (P) is an essential element for all living organisms and cannot be replaced. Municipal sewage sludge is a carrier of phosphorus, but also contains organic pollutants and heavy metals. A two-step thermal treatment is suggested, including mono-incineration of sewage sludge and subsequent thermochemical treatment of the ashes. Organic pollutants are completely destroyed by mono-incineration. The resulting sewage sludge ashes contain P, but also heavy metals. P in the ashes exhibits low bioavailability, a disadvantage in farming. Therefore, in a second thermochemical step, P is transferred into mineral phases available for plants, and heavy metals are removed as well. The thermochemical treatment was investigated in a laboratory-scale rotary furnace by treating seven different sewage sludge ashes under systematic variation of operational parameters. Heavy metal removal and the increase of the P-bioavailability were the focus of the investigation. The present experimental study shows that these objectives have been achieved with the proposed process. The P-bioavailability was significantly increased due to the formation of new mineral phases such as chlorapatite, farringtonite and stanfieldite during thermochemical treatment. KW - P-recovery KW - Sewage sludge ash KW - Thermochemical treatment KW - Mineral phases KW - X-ray diffraction PY - 2009 U6 - https://doi.org/10.1016/j.wasman.2008.09.011 SN - 0956-053X VL - 29 IS - 3 SP - 1122 EP - 1128 PB - Pergamon Press CY - New York, NY AN - OPUS4-18605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ante, A. A1 - Trumpler, A. A1 - Niermann, S. A1 - Decker, Renate A1 - Hermann, L. A1 - Adam, Christian T1 - SUSAN - Sustainable and safe re-use of municipal sewage sludge for nutrient recovery KW - Sewage sludge KW - Phosphorus KW - Recycling KW - Thermochemical treatment KW - Heavy metal removal KW - Large scale consideration PY - 2010 SN - 0016-3651 VL - 151 IS - 13 SP - 78 EP - 84 PB - Oldenbourg-Industrieverl. CY - München AN - OPUS4-22097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -