TY - JOUR A1 - Peplinski, Burkhard A1 - Adam, Christian A1 - Adamczyk, Burkart A1 - Müller, Ralf A1 - Michaelis, Matthias A1 - Krahl, T. A1 - Emmerling, Franziska T1 - Nanocrystalline and stacking-disordered beta-cristobalite AlPO4: the now deciphered main constituent of a municipal sewage sludge ash from a full-scale incineration facility JF - Powder diffraction N2 - For the first time evidence is provided that a nanocrystalline and stacking-disordered, chemically stabilized β-cristobalite form of AlPO4 occurs in a sewage sludge ash (SSA). This proof is based on a combined X-ray powder diffraction and X-ray fluorescence investigation of an SSA produced at a large-scale fluidized bed incineration facility serving a catching area with a population of 2 million. The structural and chemical characterization was carried out on 'as received' SSA samples as well as on solid residues remaining after leaching this SSA in sodium hydroxide solution. Thus, it was ascertained that the observed nanocrystalline and stacking-disordered cristobalite-like component belongs to the aluminum phosphate component of this SSA, rather than to its silicon dioxide component. In addition, a direct proof is presented that the chemically stabilized β-cristobalite form of AlPO4 does crystallize from X-ray amorphous precursors under conditions that mimic the huge heating rate and short retention time (just seconds at T ≈ 850°C), typical for fluidized bed incinerators. KW - Aluminum phosphate KW - Chemical stabilization of high-temperature forms KW - Cristobalite form KW - Stacking disorder KW - Incinerator ash KW - Sewage sludge ash PY - 2015 DO - https://doi.org/10.1017/S0885715614001213 SN - 0885-7156 VL - 30 IS - Supplement S 1 SP - S31 EP - S35 PB - JCPDS CY - Swarthmore, Pa. AN - OPUS4-33435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stemann, Jan A1 - Peplinski, Burkhard A1 - Adam, Christian T1 - Thermochemical treatment of sewage sludge ash with sodium salt additives for phosphorus fertilizer production - Analysis of underlying chemical reactions JF - Waste management N2 - Stocks of high grade phosphate rock are becoming scarce, and there is growing concern about potentially harmful impurities in conventional phosphorus fertilizers. Sewage sludge ash is a promising secondary phosphorus source. However, to remove heavy metals and convert the phosphorus contained in sewage sludge ash into mineral phases available to plants, an after-treatment is required. Laboratory-scale calcination experiments of sewage sludge ash blended with sodium salts using dried sewage sludge as a reducing agent were carried out at 1000 °C. Thus, the Ca3(PO4)2 or whitlockite component of raw sewage sludge ash, which is not readily plant available, was converted to CaNaPO4 (buchwaldite). Consequently, nearly complete phosphorus solubility in ammonium citrate (a well-established indicator for plant availability) was achieved. Moreover, it was shown that Na2CO3 may be replaced by moderately priced Na2SO4. However, molar ratios of Na/P > 2 were required to achieve >80% phosphorus solubility. Such over-stoichiometric Na consumption is largely caused by side reactions with the SiO2 component of the sewage sludge ash – an explanation for which clear evidence is provided for the first time. KW - Phosphorus recovery KW - Plant availability KW - Solubility in ammonium citrate KW - Whitlockite-to-buchwaldite transformation PY - 2015 DO - https://doi.org/10.1016/j.wasman.2015.07.029 SN - 0956-053X VL - 45 SP - 385 EP - 390 PB - Pergamon Press CY - New York, NY AN - OPUS4-33876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -