TY - JOUR A1 - Ghiringhelli, Luca M. A1 - Baldauf, Carsten A1 - Bereau, Tristan A1 - Brockhauser, Sandor A1 - Carbogno, Christian A1 - Chamanara, Javad A1 - Cozzini, Stefano A1 - Curtarolo, Stefano A1 - Draxl, Claudia A1 - Dwaraknath, Shyam A1 - Fekete, Ádám A1 - Kermode, James A1 - Koch, Christoph T. A1 - Kühbach, Markus A1 - Ladines, Alvin Noe A1 - Lambrix, Patrick A1 - Himmer, Maja-Olivia A1 - Levchenko, Sergey V. A1 - Oliveira, Micael A1 - Michalchuk, Adam A1 - Miller, Ronald E. A1 - Onat, Berk A1 - Pavone, Pasquale A1 - Pizzi, Giovanni A1 - Regler, Benjamin A1 - Rignanese, Gian-Marco A1 - Schaarschmidt, Jörg A1 - Scheidgen, Markus A1 - Schneidewind, Astrid A1 - Sheveleva, Tatyana A1 - Su, Chuanxun A1 - Usvyat, Denis A1 - Valsson, Omar A1 - Wöll, Christof A1 - Scheffler, Matthias T1 - Shared metadata for data-centric materials science N2 - The expansive production of data in materials science, their widespread sharing and repurposing requires educated support and stewardship. In order to ensure that this need helps rather than hinders scientific work, the implementation of the FAIR-data principles (Findable, Accessible, Interoperable, and Reusable) must not be too narrow. Besides, the wider materials-science community ought to agree on the strategies to tackle the challenges that are specific to its data, both from computations and experiments. In this paper, we present the result of the discussions held at the workshop on “Shared Metadata and Data Formats for Big-Data Driven Materials Science”. We start from an operative definition of metadata, and the features that a FAIR-compliant metadata schema should have. We will mainly focus on computational materials-science data and propose a constructive approach for the FAIRification of the (meta)data related to ground-state and excited-states calculations, potential-energy sampling, and generalized workflows. Finally, challenges with the FAIRification of experimental (meta)data and materials-science ontologies are presented together with an outlook of how to meet them. KW - Library and Information Sciences KW - Statistics, Probability and Uncertainty KW - Computer Science Applications KW - Education KW - Information Systems KW - Statistics and Probability PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584846 DO - https://doi.org/10.1038/s41597-023-02501-8 VL - 10 IS - 1 SP - 1 EP - 18 PB - Springer Science and Business Media LLC AN - OPUS4-58484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peplinski, Burkhard A1 - Adamczyk, Burkart A1 - Formanek, P. A1 - Meyer, Christian A1 - Krüger, O. A1 - Scharf, Holger A1 - Reinsch, Stefan A1 - Ostermann, Markus A1 - Nofz, Marianne A1 - Jäger, Christian A1 - Adam, Christian A1 - Emmerling, Franziska T1 - Nanocrystalline and stacking-disordered beta-cristobalite AlPO4 chemically stabilized at room temperature: synthesis, physical characterization, and X-ray powder diffraction data N2 - This paper reports the first successful synthesis and the structural characterization of nanocrystalline and stacking-disordered β-cristobalite AlPO4 that is chemically stabilized down to room temperature and free of crystalline impurity phases. Several batches of the title compound were synthesized and thoroughly characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectroscopy mapping in SEM, solid-state 31P nuclear magnetic resonance (31P-NMR) spectroscopy including the TRAPDOR method, differential thermal analysis (DTA), gas-sorption methods, optical Emission spectroscopy, X-ray fluorescence spectroscopy, and ion chromatography. Parameters that are critical for the synthesis were identified and optimized. The synthesis procedure yields reproducible results and is well documented. A high-quality XRD pattern of the title compound is presented, which was collected with monochromatic copper radiation at room temperature in a wide 2θ range of 5°–100°. KW - Stabilization of high-temperature phase at RT KW - Nanochrystalline AlPO4 KW - Beta-christobalite structure type KW - High-cristobalite form KW - Aluminium phosphate PY - 2017 DO - https://doi.org/10.1017/S0885715617000537 SN - 1945-7413 SN - 0885-7156 VL - 32 IS - S1 SP - S193 EP - S200 PB - JCPDS-ICDD CY - Cambridge AN - OPUS4-42235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Sekine, R. A1 - Huang, J. A1 - Steckenmesser, D. A1 - Steffens, D. A1 - Huthwelker, T. A1 - Borca, C. A1 - Pradas del Real, A. A1 - Castillo-Michel, H. A1 - Adam, Christian T1 - Effects of a nitrification inhibitor on nitrogen species in the soil and the yield and phosphorus uptake of maize N2 - Phosphorus (P) resource availability is declining and the efficiency of applied nutrients in agricultural soils is becoming increasingly important. This is especially true for P fertilizers from recycled materials, which often have low plant availability. Specific co-fertilization with ammoniumcan enhance P plant availability in soils amended with these P fertilizers, and thus the yield of plants. To investigate this effect, we performed a pot experiment with maize in slightly acidic soil (pH 6.9) with one water-soluble (triple superphosphate [TSP]) and two water-insoluble (sewage sludge-based and hyperphosphate [Hyp]) P fertilizers and anammoniumsulfate nitrate with or without a nitrification inhibitor (NI). The dry matter yield of maize was significantly increased by the NI with the Hyp (from 14.7 to 21.5 g/pot) and TSP (from 40.0 to 45.4 g/pot) treatments. Furthermore, P uptake was slightly increased in all three P treatments with the NI, but not significantly. Olsen-P extraction and P K-edge micro-X-ray absorption near-edge structure (XANES) spectroscopy showed that apatite-P of the water insoluble P fertilizers mobilized during the plant growth period. In addition, novel nitrogen (N) K-edge micro-XANES spectroscopy and the Mogilevkina method showed that the application of an NI increased the fixation of ammonium in detectable hot spots in the soil. Thus, the delay in the nitrification process by the NI and the possible slow-release of temporarily fixed ammoniumin the soil resulted in a high amount of plant available Ammonium in the soil solution. This development probably decreases the rhizosphere pH due to release of H+ by plants during ammoniumuptake, whichmobilizes phosphorus in the amended soil and increases the dry matter yield of maize. This is especially important for water-insoluble apatite-based P fertilizers (conventional and recycled), which tend to have poor plant availability. KW - Fertilzer KW - Phosphorus recovery KW - Ammonium KW - Nitrification inhibitor KW - XANES spectroscopy KW - Diffusive gradients in thin films (DGT) PY - 2020 DO - https://doi.org/10.1016/j.scitotenv.2020.136895 SN - 1879-1026 VL - 715 SP - 1 EP - 8 PB - Elsevier CY - Amsterdam AN - OPUS4-50477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Adam, Christian A1 - Kappen, P. A1 - Schiller, T. A1 - Lipiec, E. A1 - McNaughton, D. T1 - Chemical state of chromium in sewage sludge ash based phosphorus-fertilisers N2 - Sewage sludge ash (SSA) based P-fertilisers were produced by thermochemical treatment of SSA with Cl-donors at approximately 1000 °C. During this thermochemical process heavy metals are separated as heavy metal chlorides via the gas phase. Chromium cannot be separated under normal conditions. The risk of the development of toxic Cr(VI) during the thermochemical process was investigated. X-ray Absorption Spectroscopy measurements showed that SSA and thermochemically treated SSA with CaCl2, MgCl2 and NaCl contain Cr(III) compounds only. In contrast, treating SSA with elevated quantities of Na2CO3, to enhance the plant-availability of the phosphate phases of the fertiliser, developed approximately 10–15% Cr(VI). Furthermore, Raman microspectroscopy showed that using Mg-carbonate reduces the risk of a Cr(VI) development during thermochemical treatment. Additionally, leaching tests showed that only a Cr–water solubility >10% is an indicator for Cr(VI) in SSA based P-fertilisers. KW - Chromium KW - Fertiliser KW - Sewage sludge ash KW - Raman microspectroscopy KW - X-ray absorption spectroscopy PY - 2014 DO - https://doi.org/10.1016/j.chemosphere.2013.12.012 SN - 0045-6535 SN - 0366-7111 VL - 103 SP - 250 EP - 255 PB - Elsevier Science CY - Kidlington, Oxford AN - OPUS4-30062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vogel, Christian A1 - Wellendorf, Stephan A1 - Adam, Christian ED - Hilty, L. M. ED - Itoh, H. ED - Hayashi, K. ED - Edelmann, X. T1 - Phosphorus recycling from sewage sludge ash and meat and bone meal by thermochemical treatment N2 - Phosphorus can be recycled by thermochemical treatment of sewage sludge ashes using a chlorine-donor at 1000°C. Heavy metals in the sewage sludge ashes are removed and the phosphorus of the developing phosphate-phases is characterised by a high bioavailability. The separated heavy metals can be post-treated for recycling purposes. The P-content in the product can be increased by addition of meat and bone meal into the thermochemical process introducing process energy at the same time. However, first investigations showed that the elimination rates of heavy metals and the P-solubility in citric acid decreased if meat and bone meal ash (MBMA) was added to sewage sludge ash before thermochemical treatment. T2 - R'09 Twin world congress and world resources forum CY - Davos, Switzerland DA - 2009-09-14 KW - Phosphorus recycling KW - Sewage sludge KW - Meat and bone meal KW - Heavy metal recycling PY - 2009 SN - 978-3-905594-54-6 IS - Chapter B1 SP - 1 EP - 6 CY - St. Gallen, Switzerland AN - OPUS4-20274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hedrich, Martina A1 - Giese, Lutz A1 - Adam, Christian A1 - Haase, Oskar A1 - Segebade, Christian T1 - Recycling of Photovoltaic CdTe-Modules - Analytical Process Monitoring N2 - Along with the globally increasing energy demand the application of renewable energy sources is urgently required. According to national regulations and international treaties (e.g. Kyoto Protocol) these sources shall be sustainably available at reasonable financial effort and non-polluting during production, use and waste treatment. Using photovoltaic sources (PV), these requirements can clearly be met. All industry has to follow the best available technology and an integrative life cycle approach for their products and production. PV thin film technology strictly responds to this obligation. In order to save material resources and to minimise undesirable landfill recycling of spent PV modules is necessary. Recycling of multi-component materials containing mixed metals typically consists of three parts: liberation, separation, and recovery. In our study (RESOLVED – an EU Demonstration Project) the focus is on liberation and separation. The converting layer (CdTe) was liberated (removed) from the glass carrier by sandblasting and separated subsequently from the blast material (e.g. corundum) and other components using stepwise different separation techniques. Both the glass substrate and CdTe are subject to re-use. The overall feasibility of the recycling process is primarily governed by the efficiency of the procedure applied to the separation of CdTe from the rest (blasting material, glass residues, etc.). This was performed by water-based flotation. Several flotation procedures were studied regarding their separation yields. The distribution of CdTe in the phases involved (flotate, water, residue) was measured using energy dispersive X-ray fluorescence spectrometry (EDXRS) intended for future routine application and by instrumental large-volume photon activation analysis (IPAA) as a reference procedure. The results of both analytical methods were in satisfactory agreement. T2 - European Metallurgical Conference (EMC 2005) CY - Dresden, Germany DA - 2005-09-18 KW - Photovoltaic (PV) KW - Solar energy KW - CdTe-Modules KW - Recycling KW - Separation techniques KW - Monitoring PY - 2005 SN - 3-935797-22-2 VL - 4 SP - 1687 EP - 1696 PB - GDMB-Medienverl. CY - Clausthal-Zellerfeld AN - OPUS4-11004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Adam, Christian A1 - McNaughton, D. T1 - Determination of phosphate phases in sewage sludge ash-based fertilizers by Raman microspectroscopy N2 - The chemical form of phosphate phases in sewage sludge ash (SSA)-based fertilizers was determined by Raman microspectroscopy. Raman mapping with a lateral resolution of 5 × 5 µm² easily detected different compounds present in the fertilizers with the help of recorded reference spectra of pure substances. Quartz and aluminosilicates showed Raman bands in the range of 450-520 cm-1. Phosphates with apatite structure and magnesium triphosphate were determined at around 960 and 980 cm-1, respectively. Furthermore, calcium/magnesium pyrophosphates were detected in some samples. KW - Fertilizer KW - Sewage sludge ash KW - Phosphate KW - Raman microspectroscopy PY - 2013 DO - https://doi.org/10.1366/12-06955 SN - 0003-7028 SN - 1943-3530 VL - 67 IS - 9 SP - 1101 EP - 1105 PB - Society for Applied Spectroscopy CY - Frederick, Md. AN - OPUS4-28999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Exner, Robert A1 - Adam, Christian T1 - Heavy metal removal from sewage sludge ash by thermochemical treatment with polyvinylchloride N2 - Sewage sludge ash (SSA) is a prospective phosphorus source for the future production of recycling P-fertilizers. Due to its high heavy metals contents and the relatively low P plant-availability, SSA must be treated before agricultural utilisation. In this paper SSA was thermochemically treated with PVC in a bench-scale rotary furnace in order to remove heavy metals via the chloride pathway. PVC has a high Cl-content of 52–53% and a high heating value that can be beneficially used for the thermochemical process. Large amounts of waste PVC are already recovered in recycling processes, but there are still some fractions that would be available for the proposed thermochemical process, for example, the low quality near-infrared(NIR)-fraction from waste separation facilities. Heavy metals were effectively removed at temperatures in the range of 800–950°C via the gas phase by utilisation of PVC as Cl-donor. The resulting P plant-availability was comparable to SSA thermochemically treated with MgCl2 as Cl-donor if MgO was used as an additive (Mg-donor). A further increase of the plant availability of phosphorus was achieved by acid post-treatment of the thermochemically treated SSA. KW - Phosphorus recovery KW - Sewage sludge ash KW - Heavy metal removal KW - Polyvinylchloride (PVC) PY - 2013 DO - https://doi.org/10.1021/es300610e SN - 0013-936X SN - 1520-5851 VL - 47 IS - 1 SP - 563 EP - 567 PB - ACS Publ. CY - Washington, DC AN - OPUS4-27556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Rivard, C. A1 - Tanabe, I. A1 - Adam, Christian T1 - Microspectroscopy – promising techniques to characterize phosphorus in soil N2 - Phosphorus (P) is an essential element for all forms of life and is applied as fertilizer in agriculture. The P availability for plants may be highly dependent on the chemical state of P in fertilizers and soils; however, the nature of this dependence remains obscure due to the limitations of generally applied wet chemical and instrumental analytical approaches. This paper focuses on recently developed infrared, Raman, ultraviolet and X-ray microspectroscopic techniques for the characterization of P in soil. Microspectroscopic techniques have the advantage that discrete P phases can be distinguished and characterized even if their mass fractions are very low. However, only small volumes of soil can be analyzed by microspectroscopic methods hence a combination of macro- and microspectroscopic techniques is a promising concept. KW - Infrared KW - Microspectroscopy KW - Phosphorus KW - Raman KW - Soil KW - Ultraviolet KW - X-ray absorption near-edge structure (XANES) PY - 2016 DO - https://doi.org/10.1080/00103624.2016.1228942 SN - 0010-3624 SN - 1532-2416 VL - 47 IS - 18 SP - 2088 EP - 2102 AN - OPUS4-38341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Ramsteiner, M. A1 - Sekine, R. A1 - Doolette, A. A1 - Adam, Christian T1 - Characterization of phosphorus compounds in soils by deep ultraviolet (DUV) Raman microspectroscopy N2 - Deep ultraviolet Raman microspectroscopy was successfully investigated as a new approach to analyze the chemical state of phosphorus compounds directly in soil. We demonstrate that ultraviolet excitation has the advantage to avoid the interference with the strong fluorescence, which occurs in the visible spectral range caused by organic matter in soils. Furthermore, the spatial resolution of <1 μm2 enables the detection of very small phosphorus particles. For some organic phosphorus compounds (β-glycerophosphate, aminomethylphosphonic acid), sample cooling to -100 °C is found to strongly reduce the rate of degradation induced by the illumination with the ultraviolet excitation light. However, phytic acid and adenosine monophosphate degraded even with cooling. Our results reveal the capability of deep ultraviolet Raman microspectroscopy as a high-resolution benchtop imaging technique for the analysis of local interactions between soil compounds with the potential to become an analytical key to improve the understanding of transformation mechanisms of phosphates as well as other mineral phases in soils. KW - Phosphorus speciation KW - Deep ultraviolet (DUV) Raman microspectroscopy KW - Soil PY - 2017 DO - https://doi.org/10.1002/jrs.5115 SN - 0377-0486 VL - 48 IS - 6 SP - 867 EP - 871 PB - Wiley AN - OPUS4-40508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -