TY - JOUR A1 - Peplinski, Burkhard A1 - Adamczyk, Burkart A1 - Formanek, P. A1 - Meyer, Christian A1 - Krüger, O. A1 - Scharf, Holger A1 - Reinsch, Stefan A1 - Ostermann, Markus A1 - Nofz, Marianne A1 - Jäger, Christian A1 - Adam, Christian A1 - Emmerling, Franziska T1 - Nanocrystalline and stacking-disordered beta-cristobalite AlPO4 chemically stabilized at room temperature: synthesis, physical characterization, and X-ray powder diffraction data N2 - This paper reports the first successful synthesis and the structural characterization of nanocrystalline and stacking-disordered β-cristobalite AlPO4 that is chemically stabilized down to room temperature and free of crystalline impurity phases. Several batches of the title compound were synthesized and thoroughly characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy, selected area electron diffraction, energy dispersive X-ray spectroscopy mapping in SEM, solid-state 31P nuclear magnetic resonance (31P-NMR) spectroscopy including the TRAPDOR method, differential thermal analysis (DTA), gas-sorption methods, optical Emission spectroscopy, X-ray fluorescence spectroscopy, and ion chromatography. Parameters that are critical for the synthesis were identified and optimized. The synthesis procedure yields reproducible results and is well documented. A high-quality XRD pattern of the title compound is presented, which was collected with monochromatic copper radiation at room temperature in a wide 2θ range of 5°–100°. KW - Stabilization of high-temperature phase at RT KW - Nanochrystalline AlPO4 KW - Beta-christobalite structure type KW - High-cristobalite form KW - Aluminium phosphate PY - 2017 U6 - https://doi.org/10.1017/S0885715617000537 SN - 1945-7413 SN - 0885-7156 VL - 32 IS - S1 SP - S193 EP - S200 PB - JCPDS-ICDD CY - Cambridge AN - OPUS4-42235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hedrich, Martina A1 - Giese, Lutz A1 - Adam, Christian A1 - Haase, Oskar A1 - Segebade, Christian T1 - Recycling of Photovoltaic CdTe-Modules - Analytical Process Monitoring N2 - Along with the globally increasing energy demand the application of renewable energy sources is urgently required. According to national regulations and international treaties (e.g. Kyoto Protocol) these sources shall be sustainably available at reasonable financial effort and non-polluting during production, use and waste treatment. Using photovoltaic sources (PV), these requirements can clearly be met. All industry has to follow the best available technology and an integrative life cycle approach for their products and production. PV thin film technology strictly responds to this obligation. In order to save material resources and to minimise undesirable landfill recycling of spent PV modules is necessary. Recycling of multi-component materials containing mixed metals typically consists of three parts: liberation, separation, and recovery. In our study (RESOLVED – an EU Demonstration Project) the focus is on liberation and separation. The converting layer (CdTe) was liberated (removed) from the glass carrier by sandblasting and separated subsequently from the blast material (e.g. corundum) and other components using stepwise different separation techniques. Both the glass substrate and CdTe are subject to re-use. The overall feasibility of the recycling process is primarily governed by the efficiency of the procedure applied to the separation of CdTe from the rest (blasting material, glass residues, etc.). This was performed by water-based flotation. Several flotation procedures were studied regarding their separation yields. The distribution of CdTe in the phases involved (flotate, water, residue) was measured using energy dispersive X-ray fluorescence spectrometry (EDXRS) intended for future routine application and by instrumental large-volume photon activation analysis (IPAA) as a reference procedure. The results of both analytical methods were in satisfactory agreement. T2 - European Metallurgical Conference (EMC 2005) CY - Dresden, Germany DA - 2005-09-18 KW - Photovoltaic (PV) KW - Solar energy KW - CdTe-Modules KW - Recycling KW - Separation techniques KW - Monitoring PY - 2005 SN - 3-935797-22-2 VL - 4 SP - 1687 EP - 1696 PB - GDMB-Medienverl. CY - Clausthal-Zellerfeld AN - OPUS4-11004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Adam, Christian A1 - Giese, Lutz A1 - Segebade, Christian A1 - Steglich, Hans-Eckhart A1 - Weimann, Karin T1 - Recycling von Photovoltaik-Dünnschichtmodulen T2 - 4. Kolloquium SORTIEREN - Innovationen und Anwendungen CY - Berlin, Deutschland DA - 2005-10-06 KW - Photovoltaik KW - Recycling KW - Dünnschichtmodul KW - Cadmiumtellurid KW - Nassmechanische Aufbereitung KW - Photonenaktivierungsanalyse PY - 2005 SP - 55 EP - 65 PB - TU Berlin CY - Berlin AN - OPUS4-11053 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Exner, Robert A1 - Adam, Christian T1 - Heavy metal removal from sewage sludge ash by thermochemical treatment with polyvinylchloride N2 - Sewage sludge ash (SSA) is a prospective phosphorus source for the future production of recycling P-fertilizers. Due to its high heavy metals contents and the relatively low P plant-availability, SSA must be treated before agricultural utilisation. In this paper SSA was thermochemically treated with PVC in a bench-scale rotary furnace in order to remove heavy metals via the chloride pathway. PVC has a high Cl-content of 52–53% and a high heating value that can be beneficially used for the thermochemical process. Large amounts of waste PVC are already recovered in recycling processes, but there are still some fractions that would be available for the proposed thermochemical process, for example, the low quality near-infrared(NIR)-fraction from waste separation facilities. Heavy metals were effectively removed at temperatures in the range of 800–950°C via the gas phase by utilisation of PVC as Cl-donor. The resulting P plant-availability was comparable to SSA thermochemically treated with MgCl2 as Cl-donor if MgO was used as an additive (Mg-donor). A further increase of the plant availability of phosphorus was achieved by acid post-treatment of the thermochemically treated SSA. KW - Phosphorus recovery KW - Sewage sludge ash KW - Heavy metal removal KW - Polyvinylchloride (PVC) PY - 2013 U6 - https://doi.org/10.1021/es300610e SN - 0013-936X SN - 1520-5851 VL - 47 IS - 1 SP - 563 EP - 567 PB - ACS Publ. CY - Washington, DC AN - OPUS4-27556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adam, Christian A1 - Schick, J. A1 - Kratz, S. A1 - Hermann, L. A1 - Vogel, Christian T1 - Düngemittel für die Zukunft - Die Bundesanstalt für Materialforschung widmet sich der Phosphor-Rückgewinnung KW - Klärschlamm KW - Phosphor KW - Ressource KW - Klärschlammasche KW - P-Düngemittel KW - Pilotanlage PY - 2008 SN - 1433-4399 SN - 0035-7863 VL - 63 IS - 15 SP - 28 EP - 31 PB - Reed Elsevier Deutschland GmbH CY - Gräfelfing AN - OPUS4-17860 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Adam, Christian A1 - McNaughton, D. T1 - Determination of phosphate phases in sewage sludge ash-based fertilizers by Raman microspectroscopy N2 - The chemical form of phosphate phases in sewage sludge ash (SSA)-based fertilizers was determined by Raman microspectroscopy. Raman mapping with a lateral resolution of 5 × 5 µm² easily detected different compounds present in the fertilizers with the help of recorded reference spectra of pure substances. Quartz and aluminosilicates showed Raman bands in the range of 450-520 cm-1. Phosphates with apatite structure and magnesium triphosphate were determined at around 960 and 980 cm-1, respectively. Furthermore, calcium/magnesium pyrophosphates were detected in some samples. KW - Fertilizer KW - Sewage sludge ash KW - Phosphate KW - Raman microspectroscopy PY - 2013 U6 - https://doi.org/10.1366/12-06955 SN - 0003-7028 SN - 1943-3530 VL - 67 IS - 9 SP - 1101 EP - 1105 PB - Society for Applied Spectroscopy CY - Frederick, Md. AN - OPUS4-28999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Adam, Christian A1 - Sekine, R. A1 - Schiller, T. A1 - Lipiec, E. A1 - McNaughton, D. T1 - Determination of phosphorus fertilizer soil reactions by Raman and synchrotron infrared microspectroscopy N2 - The reaction mechanisms of phosphate-bearing mineral phases from sewage sludge ash-based fertilizers in soil were determined by Raman and synchrotron infrared microspectroscopy. Different reaction mechanisms in wet soil were found for calcium and magnesium (pyro-) phosphates. Calcium orthophosphates were converted over time to hydroxyapatite. Conversely, different magnesium phosphates were transformed to trimagnesium phosphate. Since the magnesium phosphates are unable to form an apatite structure, the plant-available phosphorus remains in the soil, leading to better growth results observed in agricultural pot experiments. The pyrophosphates also reacted very differently. Calcium pyrophosphate is unreactive in soil. In contrast, magnesium pyrophosphate quickly formed plant-available dimagnesium phosphate. KW - Fertilizer KW - Phosphate-bearing mineral phases KW - Raman microspectroscopy KW - Sewage sludge ash KW - Soil KW - Synchrotron infrared microspectroscopy PY - 2013 U6 - https://doi.org/10.1366/13-07056 SN - 0003-7028 SN - 1943-3530 VL - 67 IS - 10 SP - 1165 EP - 1170 PB - Society for Applied Spectroscopy CY - Frederick, Md. AN - OPUS4-29268 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Adam, Christian A1 - Vogel, Christian T1 - Technische Möglichkeiten der Phosphorrückgewinnung aus Klärschlammaschen T2 - VDI-Fachkonferenz "Klärschlammbehandlung - Technologien, Wertstoffrückgewinnung, Entwicklungen" CY - Offenbach, Deutschland DA - 2010-10-27 KW - Klärschlammasche KW - Phosphor KW - Rückgewinnung PY - 2010 SN - 978-3-9813793-2-7 SP - 217 EP - 228 CY - Düsseldorf AN - OPUS4-22338 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Adam, Christian A1 - Vogel, Christian T1 - Technische Möglichkeiten der Phosphorrückgewinnung aus Klärschlammaschen T2 - VDI Wissensforum Fachkonferenz Klärschlammbehandlung, Technologien - Wertstoffrückgewinnung - Entwicklungen CY - Offenbach am Main, Germany DA - 2010-10-27 PY - 2010 AN - OPUS4-22400 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vogel, Christian A1 - Adam, Christian A1 - Unger, M. T1 - Heavy metal removal from sewage sludge ash analyzed by thermogravimetry N2 - A high temperature (1000 °C) thermochemical process for heavy metal removal from sewage sludge ash via the chloride pathway was investigated by thermogravimetry/differential thermal analysis (TG/DTA). TG and DTA measurements gave information about secession and evaporation of water, HCl, and heavy metal chlorides at different temperatures. Additionally, gaseous water and hydrochloric acid which occurred in the process were detected by an FT-IR detector that was coupled to the TG/DTA-system. Heavy metal chlorides which were also formed in the process cannot be detected by this technique. For that reason the outlet gas of the TG/DTA-system was discharged into washing flasks filled with water for absorption. The washing flasks were replaced in temperature steps of 50 °C and the heavy metal concentrations of the solutions were determined by ICP-OES. The temperature-dependent formation/evaporation of different heavy metal chlorides was analyzed and compared for two different thermochemical processes using magnesium chloride hydrate or calcium chloride hydrate as Cl-donors. In both cases evaporation of Cd, Cu, Pb, and Zn was observed from 600 °C, whereas As, Cr, and Ni remained in the solid state. The results were discussed against the background of thermodynamic calculations. KW - Sewage sludge ash KW - Heavy metal chloride KW - Thermodynamic simulation KW - Thermogravimetry/FT-IR PY - 2011 U6 - https://doi.org/10.1007/s10973-010-0966-7 SN - 1388-6150 SN - 1418-2874 SN - 0368-4466 SN - 1572-8943 VL - 103 SP - 243 EP - 248 PB - Kluwer Academic Publ. CY - Dordrecht AN - OPUS4-23157 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -