TY - JOUR A1 - Riedel, Jens A1 - Warschat, Carsten T1 - Studying the field induced breakup of acoustically levitated drops N2 - Coulomb fission of charged droplets (The terms drop and droplet are often used synonymous. Throughout this manuscript, to avoid confusion, the terms drop and droplet will be used for liquid spheres with radii in the millimeter range and the micrometer range, respectively. In our experiments, the first correspond to the parent drop while the latter describes the ejected progeny droplets.) is a wellstudied natural phenomenon. Controlled droplet fission is already successfully employed in several technological applications. Still, since the occurring surface rupture relies on the exact understanding and description of the liquid gas boundary, some details are still under debate. Most empirical systematic studies observe falling micrometer droplets passing through the electric field inside a plate capacitor. This approach, although easily applicable and reliable, limits the experimental degrees of freedom regarding the observable time and the maximum size of the drops and can only be performed in consecutive individual observations of different subsequent drops. Here we present a novel setup to study the field induced breakup of acoustically levitated drops. The design does not bear any restrictions towards the temporal window of observation, and allows handling of drops of a tunable radius ranging from 10 µm to several millimeters and a real-time monitoring of one single drop. Our comprehensive study includes a time resolved visual inspection, laser shadowgraphy, laser induced fluorescence imaging, and ambient mass spectrometric interrogation of the nascent Taylor cone. The results shown for a millimeter sized drop, previously inaccessible for Coulomb fission experiments, are mostly comparable with previous results for smaller drops. The major difference is the time scale and the threshold potential of the drop rupture. Both values, however, resemble theoretically extrapolations to the larger radius. The technique allows for a systematic study of breakup behavior of drops of different charge, material, and size. KW - Droplet fission KW - Levitated droplets KW - Taylor limit KW - Spray PY - 2017 U6 - https://doi.org/10.1063/1.5004046 SN - 0034-6748 SN - 1089-7623 VL - 88 IS - 10 SP - 105108-1 EP - 105108-6 PB - AIP publishing AN - OPUS4-42940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -