TY - JOUR A1 - Goedecke, Caroline A1 - Mülow-Stollin, Ulrike A1 - Hering, S. A1 - Richter, Janine A1 - Piechotta, Christian A1 - Paul, Andrea A1 - Braun, Ulrike T1 - A first pilot study on the sorption of environmental pollutants on various microplastic materials N2 - With the drastic increase in plastic production, the input of plastic particles into the environment has become a recognised problem. Xenobiotics are able to sorb to polymer materials, and this process is further enhanced where they Encounter microplastics (plastic fragments <5 mm). In this work we studied the sorption of metformin, a type-2 diabetes drug, and difenoconazole, a fungicide, onto the virgin polymer materials polyamide (PA), polypropylene (PP), and polystyrene (PS). Additionally, PP was cryo-milled and PA was treated with acid to investigate the influence of an increase in surface area and chemical modification. The material properties were also studied by dynamic scanning calorimetry (DSC), gel permeation chromatography (GPC) and Fourier transform infrared spectroscopy (FTIR). Sorption experiments were performed on the basis of a full factorial design examining the effect of agitation, pH value, and salinity. Experimental results showed that difenoconazole sorbs readily to all microplastics, whereas the more polar analyte metformin did not show any affinity to the materials used. For difenoconazole the governing factor in all cases is agitation, while both pH and salinity exhibited only a slight influence. The modification of polymers leads to enhanced sorption, indicating that an increase in surface area (cryo-milled PP) or inner volume (acid-treated PA) strongly favours adsorption. Moreover, long-term experiments demonstrated that the time until equilibrium is reached depends strongly on the particle size. KW - Difenoconazole KW - Metformin KW - Plastic debris KW - Polymer KW - Dynamic scanning calorimetry PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-402393 SN - 2380-2391 VL - 4 IS - 1 SP - Article 1000191, 1 EP - 8 PB - Omics International CY - Los Angeles AN - OPUS4-40239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Goedecke, Caroline A1 - Mülow-Stollin, U. A1 - Hering, S. A1 - Richter, Janine A1 - Piechotta, Christian A1 - Paul, Andrea A1 - Braun, Ulrike T1 - Investigation of sorption of environmental pollutants to virgin and aged microplastic N2 - Plastics are used in many applications, such as packaging, building and construction, mobility and transport and more. Due to their favourable properties like light weight, flexible processing and low costs their production and consequently their input into natural systems has increased significantly over the last decades. In the environment (photo )oxidation processes and mechanical abrasion lead to the decomposition of the plastics. During this process microplastics (<5 mm) can be formed. It has been shown that environmental pollutants can sorb to these microplastics.[1,2] Nevertheless, knowledge on this topic is still limited. Our work aims at the investigation of the sorption behaviour of the triazole fungicide difenoconazole to simulated microplastics made of virgin polyamide (PA), polypropylene (PP), and polystyrene (PS). Sorption experiments were planned based on a full factorial design with agitation, salinity, and pH value as parameters. The results of our study revealed that difenoconazole indeed, has sorbed to all microplastics tested here. Data analysis showed that agitation is the main influencing factor, whereas salinity and the pH value held little to no significance on the amount of sorbed difenoconazole. To simulate the behaviour of naturally aged microplastics, sorption to cryo-milled PP and acid-treated PA was also studied. The thus treated samples were characterised by Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography (GPC), and dynamic scanning calorimetry (DSC). FTIR spectroscopy did not show any changes in the chemical structure but GPC and DSC measurements indicated a systematic chain scission of the treated PA. Scanning electron microscope (SEM) images illustrate that milling of the microplastics leads to non-spherical, star-shaped particles. This fact has a huge influence on the surface properties and consequently on the absorption. The results of our study are important in terms of i) creating realistic sorption scenarios with relevant parameters for the sorption process, as well as for ii) the choice of proper materials to simulate naturally occurring microplastics. We could show that not only the characteristics of the material like particle size distribution or surface properties are important, but also the applied analytical technique which is used for the characterization of the material . Since there is no standard methodology for microplastic identification and quantification, we suggest to combine several methods to obtain a reliable overall characterization. T2 - ICCE 2017 CY - Oslo, Norway DA - 18.06.2017 KW - Sorption KW - Microplastics KW - Environmental pollutants KW - Dynamic scanning calorimetry PY - 2017 AN - OPUS4-40748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -