TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - On developments of continuum source atomic and molecular absorption spectrometry N2 - Der Bunsen-Kirchhoff-Preis 2022 wurde am 23.06.2022 anlässlich der analytica conference in München an Dr. Carlos Abad verliehen - in Anerkennung seiner exzellenten Entwicklungen im Bereich der continuum source atomic absorption spectrometry (CS-AAS). Dr. Carlos Abad ist ein herausragender Experte auf dem Gebiet der Atom- und molekularen Absorptionsspektrometrie. insbesondere trug er maßgeblich zur substanziellen Weiterentwicklung von Echelle-Spektrometern für die CS-AAS bei. So gelang es, einen quantitativen Zugang zu Elementen wie Bor, Chlor, Fluor und Schwefel, mittels AAS zu erreichen. Erstmals demonstriert Dr. Carlos Abad am Beispiel eines Zr-Modifier, dass durch die Zeitauflösung der eingesetzten Echelle-Systeme mechanistische Untersuchungen zur Wirkung des Modifiers im Graphitrohrofen möglich sind. Besonders hervorzuheben sind seine Arbeiten zum Einsatz der CS-AAS für die Analyse von Isotopen, die eine Genauigkeit aufweist, welche an die der Multikollektor-induktiv gekoppelten Plasma-Massenspektrometrie (MC-ICP-MS) heranreicht. Damit ergeben sich völlig neue Einsatzmöglichkeiten für technologisch hochrelevante Applikationen, wie z.B. die Untersuchung der Alterung von Lithium-Batterien oder die Lithium-Analyse in Blutserum. T2 - Analytica Conference: Bunsen-Kirchhoff-Preis 2022 der Deutsche Arbeitskreis für Analytische Spektroskopie (DAAS) CY - Munich, Germany DA - 23.06.2022 KW - Isotopes KW - Fluorine KW - Halogens KW - Non-metals KW - HR-CS-MAS KW - HR-CS-AAS KW - Bunsen-Kirchhoff-Preis KW - Continuum source atomic absorption spectrometry KW - Zr-Modifier KW - Graphite furnace KW - Lithium PY - 2022 AN - OPUS4-56500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - New approaches in isotope analysis - molecular absorption spectrometry N2 - Variations in the isotope amount composition of some elements like lithium, boron, magnesium, calcium and copper have been used as proof of provenance of a sample and to describe geological processes. Routinely, isotope compositions are determinate by mass spectrometry; the working horse of the isotope analysis. However, mass spectrometric methods are expensive, time consuming and they require a high qualified analysist. Here an alternative faster and low cost optical method for isotope ratio determination is proposed: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Stable isotope amount composition of X= Li, B, Mg, Ca, Cu and Sr have been determined by monitoring the absorption spectrum of their monohydride (XH) in graphite furnace HR-CS-MAS. T2 - Seminar at Princeton University CY - Princeton, NJ, USA DA - 16.10.2017 KW - Isotope KW - High-Resolution Continuum Source Molecular Absorption Spectrometry KW - HR-CS-MAS KW - Isotopic shift KW - Graphite furnace KW - Isotope ratio PY - 2017 AN - OPUS4-43538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Analytical applications of high resolution continuum source molecular absorption spectrometry N2 - High-resolution continuum source molecular absorption spectrometry (HR-CS-MAS) has been apply for the determination of non-metals and isotope analysis, extending so the application range of atomic absorption spectrometry (AAS). This seminar is divides in two main parts. First, here is presented a comprehensive mechanistic study of molecule formation in graphite furnaces, a key step into the recovery of analytical signals in AAS and MAS. Therefore, a well-known system for fluorine determination was studied: the molecule formation of CaF, with Zr as permanent modifier. Through a kinetic approach, an Arrhenius behaved pseudo first order reaction respect to F- was observed and by spectroscopic methods (XPS, XAS, EDX) an intermediate state was possible to be elucidated. Here it is proposed a mechanism, where zirconium works as heterogeneous catalyst: after a pyrolytic step, it is activated the intermediate ZrO(OCaF) and at higher temperatures, CaF(g) is released from the zirconium-coated graphite surface. Second, we have developed analytical methods using HR-CS-MAS as detector for quantification of fluorine in consume-care products with declared per-fluorinated ingredients. Ad, the high resolution of the instrumentation allows identify isotopic shifts in some observed molecular spectra. Consequently, the molecular spectra of enriched isotopes of B were investigated and so the potential of HR-CS-MAS for the determination of isotopic ratios is established. T2 - Brown Bag Lecture SALSA Humboldt Universität zu Berlin CY - Berlin, Germany DA - 18.04.2017 KW - Fluorine KW - Molecular absorption KW - Graphite furnace KW - Isotopes KW - Boron PY - 2017 AN - OPUS4-40075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Stable isotope amount ratio analysis by using high-resolution continuum source molecular absorption spectrometry N2 - Analysis of stable isotopes has been used as proof of provenance of mineral and biological samples, to estimate a contamination source and to determine geological processes. This kind of analysis needs high accuracy and precision for reliable conclusions. Currently, stable isotope analysis is dominated by mass spectrometric techniques that are time consuming and expensive. Here we present a fast and low cost alternative for isotope analysis of boron and magnesium: high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). Two stable isotope systems were evaluated separately: boron (10B:11B) and magnesium 24Mg:25Mg:26Mg). Their isotope amount ratios were estimated by monitoring their absorption spectra in-situ generated monohydrides. The molecular absorption spectrum of a XH molecule (X= B or Mg) with n isotopes would be a linear combination of n isotopologue spectra and the amount of each component (isotope) could be calculated by a multivariate regression (n= 2 and 3 for B and Mg respectively). For the Analysis of boron certified reference materials (CRM), the band 1→1 for the electronic transition X1Σ+ → A1Π was measured around wavelength 437.1 nm. Since boron has a Memory effect in graphite furnaces, a combination of 2 % (v/v) hydrogen gas in argon, 1 % trifluoromethane in argon, an acid solution of calcium chloride and mannitol as chemical modifiers were used during the BH vaporization at 2600 °C. Partial least square regression (PLS) for analysis of samples was applied. For this, a spectral library with different isotope ratios for PLS regression was created. Magnesium does not have memory effect. Therefore, only 2 % of hydrogen in argon as gas modifier during vaporization at 2500 °C was employed for analysis of magnesium CRM. Absorption spectra of MgH for the X2Σ→A2Π electronic transition (band 0→0) were recorded around wavelength 513.45 nm. A similar PLS procedure to the BH was applied. Results for B and Mg CRM are metrologically compatible with those reported by mass spectrometric methods. An accuracy of 0.08 ‰ for B and 0.1 ‰ Mg was obtained as the average deviation from the isotope CRM. Expanded uncertainties with a coverage factor of k = 2 range between 0.10 - 0.40 ‰. T2 - SAS meeting FACSS / SciX Conference 2017 CY - Reno, NV, USA DA - 08.10.2017 KW - Boron isotopes KW - High-Resolution Continuum Source Molecular Absorption Spectrometry KW - Graphite furnace KW - Molecular absorption PY - 2017 AN - OPUS4-43528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Molecular absorption spectrometry: a fast and accurate optical method for boron isotope analysis comparable to mass spectrometry N2 - Boron presents two stable isotopes, 10B and 11B and due to their relatively large mass difference (~ 10%) isotope fractionation leads to considerable isotope amount ratio variations n(10B)/n(11B) in natural occurrence. These have been used as a proof of provenance of mineral and biological samples, to estimate a contamination source and to the determination of geological processes by erosion or subduction. Additionally, boron is employed in the nuclear industry due to the capability of its isotope 10B to thermal-neutron capture and therefore 10B enriched boric acid solutions are used in the cooling system of thermonuclear facilities and in the alloying of steel and carbides for protective shielding. Usually, isotope ratio variations are determined by mass spectroscopic methods. Here an alternative faster and low cost method for isotope ratio determination is proposed: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Boron isotope amount ratios have been determined by monitoring the absorption spectrum of boron monohydride (BH) in graphite furnace HR-CS-MAS. Bands (0→0) and (1→1) for the electronic transition X1Σ+ → A1Π were evaluated around wavelengths 433.1 nm and 437.1 nm respectively. Partial least square regression (PLS) for analysis of samples and reference materials were applied. For this, a spectral library with different isotopes ratios for PLS regression was built. Results obtained around the 433.1 nm and 437.1 nm spectral regions are metrologically compatible with those reported by mass spectrometric methods. Moreover, a precision and accuracy of the method of ± 0.5 ‰ for the evaluated spectral region around 437.1 nm is reported here. This accuracy and precision is comparable with those obtained by thermal ionization mass spectrometry (TIMS) and multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) for boron isotope ratio measurements. T2 - 30. Tag der Chemie CY - Berlin, Germany DA - 05.07.2017 KW - Boron isotopes KW - High-Resolution Continuum Source Molecular Absorption Spectrometry KW - HR-CS-MAS KW - Isotopic shift KW - Boron monohydride KW - Isotope ratio KW - Molecular absorption KW - Memory effect KW - Graphite furnace PY - 2017 AN - OPUS4-41060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -