TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Isotope analysis by molecular absorption spectrometry N2 - The use of molecular absorption spectrometry (MAS) for the determination of isotope amount ratios is here discussed. Preliminary results on the determination of isotope ratios of boron, copper and magnesium in reference materials are here presented and compared with their certificates. T2 - Adlershofer Kolloquium Analytik CY - Berlin, Germany DA - 13.06.2017 KW - Isotope KW - Molecular absorption KW - HR-CS-MAS KW - Isotopic shift KW - Spectrometry KW - Isotope ratio PY - 2017 AN - OPUS4-40574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abad Andrade, Carlos Enrique A1 - Mimus, S. A1 - Recknagel, Sebastian A1 - Jakubowski, N. A1 - Panne, Ulrich A1 - Becker-Ross, H. A1 - Huang, M.-D. T1 - Determination of organic chlorine in water via AlCl derivatization and detection by high-resolution continuum source graphite furnace molecular absorption spectrometry N2 - High-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GF-MAS) was employed for determining adsorbable organic chlorine (AOCl) in water. Organic chlorine was indirectly quantified by monitoring the molecular absorption of the transient aluminum monochloride molecule (AlCl) around a wavelength of 261.42 nm in a graphite furnace. An aluminum solution was used as the molecularforming modifier. A zirconium coated graphite furnace, as well as Sr and Ag solutions were applied as modifiers for a maximal enhancement of the absorption signal. The pyrolysis and vaporization temperatures were 600 °C and 2300 °C, respectively. Non-spectral interferences were observed with F, Br, and I at concentrations higher than 6 mg L-1, 50 mg L-1, and 100 mg L-1, respectively. Calibration curves with NaCl, 4-chlorophenol, and trichlorophenol present the same slope and dynamic range, which indicates the chlorine atom specificity of the method. This method was evaluated and validated using synthetic water samples, following the current standard DIN EN ISO 9562:2004 for the determination of the sum parameter adsorbable organic halides (AOX) for water quality. These samples contain 4-chlorophenol as the chlorinated organic standard in an inorganic chloride matrix. Prior to analysis, organic chlorine was extracted from the inorganic matrix via solid-phase extraction with a recovery rate >95%. There were no statistically significant differences observed between measured and known values and for a t-test a confidence level of 95% was achieved. The limits of detection and characteristic mass were found to be 48 and 22 pg, respectively. The calibration curve was linear in the range 0.1–2.5 ng with a correlation coefficient R2 = 0.9986. KW - Chlorides KW - Chlorine KW - Graphite furnace KW - Spectrometry KW - Diatomic molecule KW - Water KW - AlCl PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-534426 SN - 1759-9660 VL - 13 IS - 33 SP - 3724 EP - 3730 PB - The Royal Society of Chemistry CY - London, UK AN - OPUS4-53442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Muench, S. A1 - Okruss, M. A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Optical spectrometry versus mass spectrometry for stable isotope analysis of B and Mg N2 - Mass spectrometric methods (MC-ICP-MS and TIMS) are without doubt the working horse of stable isotope analysis. However, drawbacks of these methods include the high costs for instruments and their operation, experienced operators and elaborate chromatographic sample preparation which are time consuming. We propose a lower-cost and faster optical alternative for the analysis of isotope ratios of selected elements: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Stable isotope amount compositions of boron (B) and magnesium (Mg) were determined based on the absorption spectra of in-situ generated mono-hydrides and halide (MH and MX) using graphite furnace HR-CS-MAS. The use of a modular simultaneous echelle spectrograph (MOSES) helps to find the maximal isotope shift in the diatomic molecular spectra produced in a graphite furnace by using isotopic spike solutions. Isotopes of boron (10B and 11B) were studied via their hydrides for the electronic transition X 1Σ+ → A 1Π. The spectrum of a given sample is a linear combination of the 10BH molecule and its isotopologue 11BH. Therefore, the isotopic composition of samples can be calculated by a partial least square regression (PLS). For this, a spectral library was built by using samples and spikes with known isotope composition. Boron isotope ratios measured by HR-CS-MAS are identical with those measured by mass spectrometric methods at the 0.15 ‰ level. Similar results were obtained for a multiple isotope system like Mg (24Mg, 25Mg, and 26Mg), where isotope shifts of their isotopologues can be resolved in the MgF molecule for the electronic transition X 2Σ → A 2 Πi. The extension of this methodology to other elements like Li, Ca, Cu, and Sr is discussed. T2 - 13. Symposium „Massenspektrometrische Verfahren der Elementspurenanalyse“ zusammen mit dem 26. ICPMS-Anwendertreffen CY - Berlin, Germany DA - 03.09.2018 KW - Isotope KW - HR-CS-MAS KW - Isotopic shift KW - Spectrometry KW - Boron monohydride KW - Magnesium monofluoride KW - Molecular absorption spectrometry PY - 2018 AN - OPUS4-45868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Stable Isotope Analysis Using Molecular Absorption Spectrometry N2 - We propose an alternative faster and low-cost optical method for isotope analysis: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Stable isotope amount composition of X = Li, B, Mg, Ca and Sr were determined by monitoring the absorption spectra of their in situ generated mono-hydrides (XH) in graphite furnace HR-CS-MAS. Isotopes of boron (10B and 11B) were studied via their hydrides for the electronic transition X1Σ+ → A1Π (Fig. 1a). The spectrum of a given sample is a linear combination of the 10BH molecule and its isotopologue 11BH. Therefore, the isotopic composition of samples can be calculated by a partial least square regression (PLS). For this, a spectral library is built by using samples with known isotope composition. Results with an accuracy of 0.15 ‰ are metrologically compatible with those reported by mass spectrometric methods. Similar results are obtained for n isotope systems like Mg (24Mg, 25Mg, and 26Mg), where isotope shifts of their isotopologues can be resolved as shown in Fig.1b. The extension of this methodology to other elements like Li, Ca and Sr is discussed. T2 - Goldschmidt Conference 2018 CY - Boston, MA, USA DA - 12.08.2018 KW - Isotope KW - HR-CS-MAS KW - Mono-hydride KW - Spectrometry PY - 2018 AN - OPUS4-45825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Stable isotope analysis via hydrides using molecular absorption spectrometry N2 - Small variations in the isotopic composition of some elements have been used as proof of provenance of mineral and biological samples, to describe geological processes, and to estimate a contamination source. Routinely, isotope compositions are measured by mass spectrometry; the working horse of the isotope analysis. However, mass spectrometric methods are expensive, time-consuming and they require a high qualified analyst. Here, an alternative faster and low-cost optical method for isotope ratio determination is investigated: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Stable isotope amount composition of X = Li, B, Mg, Ca and Sr have been determined by monitoring the absorption spectra of their in situ generated hydrides (XH) in graphite furnace HR-CS-MAS. For example, the system of two stable isotopes of boron (10B and 11B) was studied via its hydride for the electronic transition X1Σ+ → A1Π (Fig. 1a). The spectrum of a given sample is a linear combination of the 10BH molecule and its isotopologue 11BH. Therefore, isotopic composition of samples and reference materials are calculated by a partial least square regression (PLS). For this, a spectral library is built by using samples with known isotope composition. Results are metrologically compatible with those reported by mass spectrometric methods. [1] Similar results are obtained for n isotope systems like Mg (24Mg, 25Mg, and 26Mg), where isotope shift of their isotopologues can be resolved as shown in Fig.1 b. The extension of this methodology to other elements like Li, Ca and Sr is discussed [2]. References: [1] C. Abad, S. Florek, H. Becker-Ross, M.-D. Huang, H.-J. Heinrich, S. Recknagel, J. Vogl, N. Jakubowski, U. Panne, Determination of boron isotope ratios by high-resolution continuum source molecular absorption spectrometry using graphite furnace vaporizers, Spectrochim. Acta, Part B, 136 (2017) 116-122. [2] C. Abad et al., unpublished results, 2018. T2 - ESAS & CANAS 2018 CY - Berlin, Germany DA - 20.03.2018 KW - Isotope KW - HR-CS-MAS KW - Mono-hydride KW - Spectrometry PY - 2018 AN - OPUS4-45826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -