TY - JOUR A1 - Kowalewska, Z. A1 - Abad Andrade, Carlos Enrique A1 - Okruss, M. A1 - Recknagel, Sebastian T1 - Feasibility of high-resolution continuum source molecular absorption spectrometry for vanadium determination N2 - This work aimed to evaluate high-resolution continuum source molecular absorption spectrometry (HR-CS MAS), traditionally used to determine non-metals, for the determination of a new element, metal, vanadium. VO was selected as a target molecule because it is relatively stable and was expected to be spontaneously generated in a flame or a graphite furnace (GF). The high-resolution overview spectra of the molecule were obtained in a wide range of 480–630 nm, and absorption due to the X4Σ−–C4Σ− electronic transition was registered. A unique instrumental setup, comprising a prototype Modular Simultaneous Echelle Spectrograph (MOSES) and a commercial HR-CS MAS apparatus, was applied in the research. Finally, the spectral area centered at 550.6230 nm was selected for analysis. A method was developed to determine V in solutions of catalysts of heavy petroleum oil hydroprocessing using a commercial HR-CS spectrometer in a flame version. Although sensitivity was relatively poor (characteristic concentration 380 mg L−1), an extremely low noise enabled reaching a satisfactory detection limit (20 mg L−1 in solution, i.e. 0.1% m:m in the catalyst). For the first time vanadium was determined using ordinary air-acetylene flame. The obtained results were consistent with the results of atomic absorption spectrometry with N2O-C2H2 flame. Unfortunately, only a small population of VO molecules could have been generated in GF measurements. Furthermore, the observed VO molecules appeared only at unfavorably high temperatures. The work shows the potential of HR-CS MAS as a scientific tool for investigating the mechanism of processes occurring in the GF. This work can inspire other research of new analytes for HR-CS MAS. KW - Vanadium KW - HR-CS-MAS KW - VO KW - High-resolution continuum source molecular absorption spectrometry KW - AAS PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-569899 SN - 0267-9477 VL - 38 IS - 2 SP - 472 EP - 483 PB - Royal Society of Chemistry AN - OPUS4-56989 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Isotope analysis by molecular absorption spectrometry N2 - The use of molecular absorption spectrometry (MAS) for the determination of isotope amount ratios is here discussed. Preliminary results on the determination of isotope ratios of boron, copper and magnesium in reference materials are here presented and compared with their certificates. T2 - Adlershofer Kolloquium Analytik CY - Berlin, Germany DA - 13.06.2017 KW - Isotope KW - Molecular absorption KW - HR-CS-MAS KW - Isotopic shift KW - Spectrometry KW - Isotope ratio PY - 2017 AN - OPUS4-40574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Lippitz, Andreas A1 - Benemann, Sigrid A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Jakubowski, Norbert A1 - Huang, M.-D. A1 - Florek, S. A1 - Becker-Ross, H. T1 - A proposed mechanism of action of permanent modifiers for molecular absorption spectrometry: the case of calcium monofluoride N2 - High-Resolution Continuum Source Molecular Absorption Spectrometry (HR-CS-MAS) with graphite furnace atomizers has been successfully used for the analytical determination of non-metals. The use of permanent modifiers (or coatings) for molecule formation is necessary, but their mechanisms of action remain unclear. In order to understand and improve the current analytical methods, we present a comprehensive mechanistic study of molecule formation in graphite furnaces: a key step into the recovery of analytical signals. Therefore, a well-known system for fluorine determination was studied: the molecule formation of CaF, with Zr as permanent modifier. Through a kinetic approach, an Arrhenius plot showed a pseudo first order reaction respect to F-. By spectroscopic methods (XPS, XAS, EDX) it was possible to elucidate an intermediate state. Here a mechanism is proposed, where ZrO2 works as heterogeneous catalyst: after a pyrolytic step, it is activated to the intermediate state of ZrO(OCaF) and at higher temperatures, CaF(g) is released from the zirconium-coated graphite surface. With this analytical information, improved surface modifications and coatings for graphite furnaces can be designed and some of them, for example with Zr nanoparticle and Zr xerogels are here presented. T2 - ANAKON 2017 CY - Tübingen, Germany DA - 03.04.2017 KW - Fluorine KW - High-resolution continuum source Molecular Absorption Spectrometry KW - HR-CS-MAS KW - Zirconium oxide KW - Modifier KW - Coating PY - 2017 AN - OPUS4-39902 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - On developments of continuum source atomic and molecular absorption spectrometry N2 - Der Bunsen-Kirchhoff-Preis 2022 wurde am 23.06.2022 anlässlich der analytica conference in München an Dr. Carlos Abad verliehen - in Anerkennung seiner exzellenten Entwicklungen im Bereich der continuum source atomic absorption spectrometry (CS-AAS). Dr. Carlos Abad ist ein herausragender Experte auf dem Gebiet der Atom- und molekularen Absorptionsspektrometrie. insbesondere trug er maßgeblich zur substanziellen Weiterentwicklung von Echelle-Spektrometern für die CS-AAS bei. So gelang es, einen quantitativen Zugang zu Elementen wie Bor, Chlor, Fluor und Schwefel, mittels AAS zu erreichen. Erstmals demonstriert Dr. Carlos Abad am Beispiel eines Zr-Modifier, dass durch die Zeitauflösung der eingesetzten Echelle-Systeme mechanistische Untersuchungen zur Wirkung des Modifiers im Graphitrohrofen möglich sind. Besonders hervorzuheben sind seine Arbeiten zum Einsatz der CS-AAS für die Analyse von Isotopen, die eine Genauigkeit aufweist, welche an die der Multikollektor-induktiv gekoppelten Plasma-Massenspektrometrie (MC-ICP-MS) heranreicht. Damit ergeben sich völlig neue Einsatzmöglichkeiten für technologisch hochrelevante Applikationen, wie z.B. die Untersuchung der Alterung von Lithium-Batterien oder die Lithium-Analyse in Blutserum. T2 - Analytica Conference: Bunsen-Kirchhoff-Preis 2022 der Deutsche Arbeitskreis für Analytische Spektroskopie (DAAS) CY - Munich, Germany DA - 23.06.2022 KW - Isotopes KW - Fluorine KW - Halogens KW - Non-metals KW - HR-CS-MAS KW - HR-CS-AAS KW - Bunsen-Kirchhoff-Preis KW - Continuum source atomic absorption spectrometry KW - Zr-Modifier KW - Graphite furnace KW - Lithium PY - 2022 AN - OPUS4-56500 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - New approaches in isotope analysis - molecular absorption spectrometry N2 - Variations in the isotope amount composition of some elements like lithium, boron, magnesium, calcium and copper have been used as proof of provenance of a sample and to describe geological processes. Routinely, isotope compositions are determinate by mass spectrometry; the working horse of the isotope analysis. However, mass spectrometric methods are expensive, time consuming and they require a high qualified analysist. Here an alternative faster and low cost optical method for isotope ratio determination is proposed: high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Stable isotope amount composition of X= Li, B, Mg, Ca, Cu and Sr have been determined by monitoring the absorption spectrum of their monohydride (XH) in graphite furnace HR-CS-MAS. T2 - Seminar at Princeton University CY - Princeton, NJ, USA DA - 16.10.2017 KW - Isotope KW - High-Resolution Continuum Source Molecular Absorption Spectrometry KW - HR-CS-MAS KW - Isotopic shift KW - Graphite furnace KW - Isotope ratio PY - 2017 AN - OPUS4-43538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique T1 - Optical spectrometry for isotope analysis N2 - Isotope analysis plays a critical role in various disciplines, including environmental science, archaeology, and forensic investigations. Traditional methods such as mass spectrometry provide precise isotopic data but often require complex, costly setups and extensive sample preparation. As an alternative, optical spectrometry has emerged as a versatile and less invasive technique. This presentation explores the advancements and applications of optical spectrometry methods in isotope analysis, emphasizing their benefits and challenges. T2 - University of Calgary PHYS 561 - Stable And Radioactive Isotope - Winter 2024 CY - Online meeting DA - 07.03.2024 KW - Isotopes KW - HR-CS-MAS KW - Chemometrics KW - Laser Ablation Molecular Absorption spectrometry KW - LAMIS PY - 2024 AN - OPUS4-59948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Winckelmann, Alexander A1 - Morcillo, Dalia A1 - Jegieka, Dennis A1 - Vogl, Jochen A1 - Florek, S. A1 - Recknagel, Sebastian T1 - Isotope analysis through the integration of chemometrics into optical spectroscopy N2 - Lithium (Li), Boron (B), Nitrogen (N), Magnesium (Mg), and Calcium (Ca) are pivotal elements across various spheres such as the hydrosphere, biosphere, and lithosphere, significantly impacting (bio-) geochemical and physiological processes. These elements exhibit stable isotopes with substantial roles in geological, environmental, and biological studies. The traditional method for measuring isotope amount ratios has been through mass spectrometry, which, despite its accuracy, comes with high operational costs, the need for skilled operators, and time-consuming sample preparation processes. Combining optical spectroscopy with chemometrics introduces an innovative, cost-effective approach by the hand of high-resolution continuum source atomic and molecular absorption spectrometry (HR-CS-AAS and HR-CS-MAS) for the analysis of isotope ratios in Li, B, N, Mg, and Ca. By analyzing the atomic or molecular absorption spectrum of the in-situ generated cloud of atoms of diatomic molecules (e.g., Li, BH, NO, MgF, CaF) during the electronic transition from the fundamental state, this method allows for the rapid determination of isotope ratios directly from sample solutions without the need for complex sample preparation. For each element, the respective atomic or molecule's absorption spectrum was deconvoluted into its isotopic components using partial least squares regression or machine learning algorithms. Robust calibration models were developed, calibrated with enriched isotope, and validated against certified reference materials. Spectral data underwent preprocessing to optimize the modeling to determine the optimal number of latent variables. The findings showcase that this optical spectrometric method yields results that agree with those obtained via inductively coupled plasma mass spectrometry (ICP-MS), offering a promising, cost-effective, and rapid alternative for isotope analysis with precisions as low as ± 0.2‰. This approach is a significant advancement in analytical chemistry, providing a new way to study isotope variations in biological, environmental, and geological samples. T2 - Analytica Conference CY - Munich, Germany DA - 09.04.2024 KW - Isotopes KW - HR-CS-MAS KW - Chemometrics KW - Lithium KW - Boron KW - Magnesium KW - Nitrogen PY - 2024 AN - OPUS4-59946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Radtke, Martin A1 - Lippitz, Andreas A1 - Hodoroaba, Vasile-Dan A1 - Schmid, Thomas A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Zirconium permanent modifiers for graphite furnaces used in absorption spectrometry: understanding their structure and mechanism of action N2 - The mechanism of action of zirconium permanent modifiers on graphite surfaces was investigated in order to understand its influence on the analytical signal in atomic and molecular absorption spectrometry (AAS/MAS). For this, the molecule formation of CaF was studied, which is used for the indirect analytical determination of fluorine in high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS-GFMAS). The kinetics of this reaction was established by monitoring its molecular spectrum at different atomisation temperatures. An Arrhenius plot showed a pseudo-first order reaction with respect to fluorine (n = 1). An intermediate state was isolated, and its structure was elucidated by spectroscopic methods: scanning electron microscopy with energy dispersive X-ray spectroscopy (SEMEDX), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XANES and EXAFS), and Raman microspectroscopy. We propose here a mechanism, where ZrO2 acts as a heterogeneous catalyst: after a pyrolytic step, an intermediate state of ZrO(OCaF) is activated, and at higher temperatures, CaF(g) is released from the zirconium-coated graphite surface. No evidence of the formation of zirconium carbide was found. Consequently, as the CaF formation is catalysed by a heterogeneous catalyst, surface modifications with ZrO2 nanoparticles and ZrO xerogels were investigated in order to increase the surface area. Their influence was evaluated in the molecule formation of CaF, CaCl, CaBr, and CaI. Graphite furnace modification with zirconium oxide nanoparticles proves to be the best choice for fluorine analysis with a signal enhancement of more than eleven times with respect a non-coated graphite furnace. However, the influence of zirconium modifications in the analytical signals of Cl, and I is lower than the F signals or even negative in case of the Br. Understanding zirconium modifiers as heterogeneous catalysts offers a new perspective to AAS and MAS, and reveals the potential of surface analytical methods for development of improved permanent modifiers and graphite furnace coatings. KW - Zirconium KW - HR-CS-MAS KW - Graphite furnace KW - Nanoparticles KW - Xerogel KW - Calcium monofluoride KW - Absorption spectrometry PY - 2018 UR - https://pubs.rsc.org/en/content/articlelanding/2018/ja/c8ja00190a U6 - https://doi.org/10.1039/C8JA00190A SN - 0267-9477 VL - 33 IS - 12 SP - 2034 EP - 2042 PB - Royal Society of Chemistry AN - OPUS4-46775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Muench, S. A1 - Okruss, M. A1 - Mao, X. A1 - Zorba, V. A1 - Recknagel, Sebastian A1 - Tatzel, Michael A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - A comparative analysis of optical spectrometry methods and MC-ICP-MS for stable isotope analysis of magnesium in geological samples N2 - Society for Applied Spectroscopy (SAS) Atomic Section Student Award. Magnesium is a major element in the hydrosphere and biosphere and plays important roles in (bio-) geochemical and physiological cycles. Mg has three stable isotopes, 24Mg, 25Mg and 26Mg. It is due to their relatively large mass difference (~8% between) that isotope fractionation leads to slight variations of isotope amount ratios in biological, environmental and geological samples. Traditionally, isotope ratios are measured by mass spectrometric methods. Their drawbacks include the high costs for instruments and their operation, experienced operators and elaborate time-consuming chromatographic sample preparation. Recently, optical spectrometric methods have been proposed as faster and low-cost alternative for the analysis of isotope ratios of selected elements by means of high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS), and laser ablation molecular isotopic spectrometry (LAMIS). For the determination of Mg isotope ratios in selected rock reference materials, the molecular spectrum of the in-situ generated MgF and MgO molecules were studied and their results compared with MC-ICP-MS. By HR-CS-MAS, samples were dissolved by acid digestion and Mg isotopes analyzed with and without matrix. The absorption spectrum was recorded for MgF for the electronic transitions X 2Σ → A 2 Πi, and X 2Σ → B 2Σ+. In the case of LAMIS, we investigated the MgF molecule for the electronic transition A 2Πi → X 2Σ, as well as direct analysis by the MgO molecule for the electronic transition A 1Π+ → X 1Σ. The MgF and MgO spectra are described as the linear combination of their isotopic components or isotopologues: 24MgF, 25MgF, and 26MgF for the MgF and 24MgO, 25MgO, and 26MgO for the MgO. The isotope analysis was done by deconvolution of the MgF spectrum by partial least square regression (PLS) calibrated with enriched isotope spikes. Results were accurate with precisions ranging between 0.2 ‰ and 0.8 ‰ (2 SD, n= 10) for HR-CS-GFMAS. No statistically significant differences were observed for samples w/o matrix extraction. On the other hand, LAMIS allows the direct analysis of solid samples with the extended possibility of direct analysis, however the precision is lower due the lack of solid isotopic calibration standards. T2 - SciX 2019. 46th Annual North American Meeting of the Federation of Analytical Chemistry and Spectroscopy Societies (FACSS) CY - Palm Springs, CA, USA DA - 13.10.2019 KW - Isotope analysis KW - Diatomic molecule KW - Magnesium KW - MC-ICP-MS KW - HR-CS-MAS KW - LIBS PY - 2019 AN - OPUS4-49883 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abad Andrade, Carlos Enrique A1 - Florek, S. A1 - Becker-Ross, H. A1 - Huang, M.-D. A1 - Heinrich, Hans-Joachim A1 - Recknagel, Sebastian A1 - Vogl, Jochen A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - Determination of boron isotope ratios by high-resolution continuum source molecular absorption spectrometry using graphite furnace vaporizers N2 - Boron isotope amount ratios n(10B)/n(11B) have been determined by monitoring the absorption spectrum of boron monohydride (BH) in a graphite furnace using high-resolution continuum source molecular absorption spectrometry (HR-CS-MAS). Bands (0→0) and (1→1) for the electronic transition X1Σ+ → A1Π were evaluated around wavelengths 433.1 nm and 437.1 nm respectively. Clean and free of memory effect molecular spectra of BH were recorded. In order to eliminate the memory effect of boron, a combination of 2% (v/v) hydrogen gas in argon and 1% trifluoromethane in argon, an acid solution of calcium chloride and mannitol as chemical modifiers was used. Partial least square regression (PLS) for analysis of samples and reference materials were applied. For this, a spectral library with different isotopes ratios for PLS regression was built. Results obtained around the 433.1 nm and 437.1 nm spectral regions are metrologically compatible with those reported by mass spectrometric methods. Moreover, for the evaluated region of 437 nm, an accuracy of 0.15‰ is obtained as the average deviation from the isotope reference materials. Expanded uncertainties with a coverage factor of k = 2 range between 0.15 and 0.44‰. This accuracy and precision are compatible with those obtained by mass spectrometry for boron isotope ratio measurements. KW - Boron isotopes KW - Isotope ratios KW - Boron monohydride KW - Molecular absorption KW - High-resolution continuum source absorption spectrometry KW - Graphite furnace KW - Memory effect KW - HR-CS-MAS PY - 2017 UR - http://www.sciencedirect.com/science/article/pii/S0584854717302537 U6 - https://doi.org/10.1016/j.sab.2017.08.012 SN - 0584-8547 VL - 136 SP - 116 EP - 122 PB - Elsevier CY - Amsterdam, The Netherlands AN - OPUS4-42071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -