TY - CONF A1 - Detjens, Marc A1 - Tiebe, Carlo A1 - Banach, Ulrich A1 - Ritter, U. T1 - Ionic Liquid Based Coulometric Trace Humidity Sensors T2 - ALLSENSORS 2018 N2 - This work presents a first attempt to use ionic liquids as a new coating for planar coulometric sensors. These sensors are used for the measurement of trace humidity in various gases. Usually, the coating of the sensors is tetraphosphorus decaoxide and its hydrolysis products. Instead, a hygroscopic ionic liquid was used as sensor coating in this work. Generated frost point temperatures tf in the gas ranged from -80 °C to -30 °C, which is equivalent to vapour mole fractions xv from 0.5 μmol·mol-1 to 376 μmol·mol-1. In addition to the coulometric sensors, the generated humidity is determined by a precision dew point hygrometer as reference. First results show that it is possible to measure humidity with ionic liquid based coulometric sensors. T2 - ALLSENSOR 2018 CY - Rom, Italy DA - 25.03.2018 KW - Ionic liquids. KW - Coulometric sensors KW - Sensor coating KW - Trace humidity measurement PY - 2018 SN - 978-1-61208-621-7 SP - 13 EP - 14 PB - IARIA AN - OPUS4-44609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Detjens, Marc A1 - Tiebe, Carlo A1 - Banach, Ulrich T1 - Influence of Gas Pressure on Coulometric Trace Humidity Measurement T2 - Proceedings of 17th International Meeting on Chemical Sensors 2018 N2 - Planar coulometric sensors were investigated in humidified synthetic air at various absolute gas pressures, i. e. 2 bar, 5, bar, 10 bar, and 15 bar. Humidified gas flow at adjusted gas pressure was split into two flows, one passed a coulometric sensor and the other one passed a reference hygrometer after decompression. Both signals were recorded and then compared after calculation of resulting frost point temperature. Calculation is based on a calibration function obtained at ambient pressure. Comparison showed that an increasing pressure resulted in a higher derivation between sensor signal (calculated frost point temperature) and reference frost point temperature. At an absolute pressure of 2 bar the differences were minor in consideration of the uncertainty, however at 15 bar the differences were 6.77 K. Nevertheless, it was possible to measure the gas humidity at higher pressure with coulometric trace humidity sensors. T2 - 17th International Meeting of Chemical Sensors, IMCS 2018 CY - Vienna, Austria DA - 15.07.2018 KW - Gas pressure influence KW - Coulometric sensors KW - Trace humidity measurement PY - 2018 SN - 978-3-9816876-9-9 DO - https://doi.org/10.5162/IMCS2018/P2EC.7 SP - 715 EP - 716 PB - AMA Service GmbH CY - Wunstorf / Germany AN - OPUS4-45539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Detjens, Marc A1 - Hübert, Thomas A1 - Tiebe, Carlo A1 - Banach, Ulrich T1 - Temperature influence on coulometric trace humidity measurement T2 - Proceedings of the IEEE Sensors 2017 N2 - Planar coulometric sensors were tested in humidified synthetic air at various gas temperatures. Generated frost point temperature in the gas ranged from -30 °C to -60 °C and were measured by coulometric sensors and in addition by a calibrated dew point hygrometer. The gas temperatures, which were measured by a calibrated Pt100 sensor, were set to -20 °C, 0 °C, 23 °C, 40 °C, 50 °C, and 60 °C during the experiments. Empiric nonlinear functions were calculated between the generated humidity and the sensor signals. In comparison to the measured signals at 23 °C, the sensor signals were lower at the other gas temperatures. The measurements at 60 °C showed indistinct results due to a great signal noise. The response behavior of the sensors was similar at 23 °C, 40 °C and 50 °C. In contrast to that, the sensors reacted slowly at a gas temperature of -20 °C and 0 °C. In summary, with coulometric sensors it was possible to measure continuously trace humidity with an expanded uncertainty below 2 K. T2 - IEEE Sensors 2017 CY - Glasgow, Scotland, UK DA - 30.10.2017 KW - Response behavior KW - Coulometric sensors KW - Trace humidity measurement KW - Temperature influence KW - Chemical reaction PY - 2017 SN - 978-1-5386-4056-2 SP - 1308 EP - 1310 PB - IEEE CY - Piscataway, NJ, USA AN - OPUS4-43241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Detjens, Marc A1 - Hübert, Thomas A1 - Tiebe, Carlo A1 - Banach, Ulrich T1 - Coulometric trace humidity measurement in technical gases JF - Review of scientific instruments N2 - Trace humidity was measured by using miniaturized planar coulometric sensors in technical gases such as hydrogen, nitrogen, helium, nitrous oxide, and synthetic air. Frost point temperatures tf in the gases ranged from −60 °C to −30 °C, which is equivalent to a vapour mole fraction xv from 10 μmol mol−1 to 376 μmol mol−1. In addition, the generated humidity was determined by using a precision dew point hygrometer as reference. Nonlinear calibration functions were calculated that correlated electric current (sensor signal) and reference humidity. Parameters of functions were tested with one-way analysis of variances (ANOVA) to prove if all used sensors had a similar behavior in the same gas during experiments. Results of ANOVA confirmed that averaged functions can be applied for trace humidity measurement in nitrogen, helium, nitrous oxide, and synthetic air. The calculated functions were negligibly different for nitrogen, helium, and synthetic air. In humidified nitrous oxide, a minor change of parameters was observed due to lower electrical currents. In total contrast to that, the measured sensor signals were significantly higher in humidified hydrogen and each sensor required its own calibration function. The reason was a recombination effect that favoured multiple measurements of water molecules. Nevertheless, it was possible to measure continuously trace humidity in all tested gases by using coulometric sensors with an expanded uncertainty below 2 K (k = 2). KW - ANOVA KW - Trace humdity measurement KW - Coulometric sensors KW - Chemical sensors KW - Measurement uncertainty PY - 2018 DO - https://doi.org/10.1063/1.5008463 SN - 0034-6748 SN - 1089-7623 VL - 89 IS - 8 SP - 085004, 1 EP - 8 PB - American Institute of Physics (AIP) CY - Maryland (USA) AN - OPUS4-45956 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -