TY - CONF A1 - Epple, Niklas A1 - Sanchez Trujillo, Camila Andrea A1 - Niederleitinger, Ernst T1 - Ultrasonic monitoring of large-scale structures – input to engineering assessment N2 - Ultrasonic coda wave interferometry can detect small changes in scattering materials like concrete. We embedded ultrasonic transducers in the Gänstorbrücke Ulm, a monitored road bridge in Germany, to test the methodology. Since fall 2020, we've been monitoring parts of the bridge and comparing the results to commercial monitoring systems. We calculate signal and volumetric velocity changes using coda waves, and long-term measurements show that the influence of temperature on strains and ultrasound velocity changes can be monitored. Velocity change maps indicate that different parts of the bridge react differently to environmental temperature changes, revealing local material property differences. A load experiment with trucks allows calibration to improve detectability of possibly damaging events. Our work focuses on measurement reliability, potential use of and distinction from temperature effects, combination with complementary sensing systems, and converting measured values to information for damage and life cycle assessment. T2 - IALCCE 2023 CY - Milano, Italy DA - 02.07.2023 KW - Ultrasonic KW - Monitoring KW - Bridge KW - NDT KW - coda PY - 2023 SP - 1 EP - 8 PB - IALCCE CY - Milan AN - OPUS4-58047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epple, Niklas A1 - Sanchez Trujillo, Camila Andrea A1 - Hau, Julia A1 - Niederleithinger, Ernst A1 - Malm, F. T1 - Structural Monitoring in an Urban Underground Metro Station Using Cod N2 - Active ultrasonic monitoring with coda wave interferometry has demonstrated its potential for structural Health monitoring in concrete structures. This study investigates its application using ultrasonic transducers embedded in the ceiling of a subway station in Munich, Germany. We evaluate the impact of environmental conditions, specifically electromagnetic interference and temperature, on data quality, as well as the influence of regular loading from passing trams. Results indicate that electromagnetic interference significantly affects measurements, while temperature effects remain minimal due to the station’s stable thermal environment. Long-term measurements and a controlled load test show that both dynamic and static loading from trams induce ultrasonic velocity changes of only 0.01%–0.06%. Although the experiment demonstrates the capacity to detect structural responses and supports the feasibility of long-term monitoring, improved electromagnetic shielding and Hardware reliability are required for successful future applications. T2 - NDT-CE 2025 CY - Izmir, Turkey DA - 24.09.2025 KW - Coda Wave Interferometry (CWI) KW - Structural health monitoring (SHM) KW - Concrete KW - Ultrasonic testing KW - Urban infrastructure PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654619 DO - https://doi.org/10.58286/31706 SN - 1435-4934 SP - 1 EP - 10 PB - e-Journal of Nondestructive Testing (eJNDT) AN - OPUS4-65461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -