TY - JOUR A1 - Resch-Genger, Ute A1 - Bremser, Wolfram A1 - Pfeifer, Dietmar A1 - Spieles, Monika A1 - Hoffmann, Angelika A1 - DeRose, P.C. A1 - Zwinkels, J. C. A1 - Gauthier, F. A1 - Ebert, B. A1 - Taubert, D. A1 - Monte, C. A1 - Voigt, J. A1 - Hollandt, J. A1 - Macdonald, R. T1 - State-of-the art comparability of corrected emission spectra. 1. spectral correction with physical transfer standards and spectral fluorescence standards by expert laboratories JF - Analytical chemistry N2 - The development of fluorescence applications in the life and material sciences has proceeded largely without sufficient concern for the measurement uncertainties related to the characterization of fluorescence instruments. In this first part of a two-part series on the state-of-the-art comparability of corrected emission spectra, four National Metrology Institutes active in high-precision steady-state fluorometry performed a first comparison of fluorescence measurement capabilities by evaluating physical transfer standard (PTS)-based and reference material (RM)-based calibration methods. To identify achievable comparability and sources of error in instrument calibration, the emission spectra of three test dyes in the wavelength region from 300 to 770 nm were corrected and compared using both calibration methods. The results, obtained for typical spectrofluorometric (0°/90° transmitting) and colorimetric (45°/0° front-face) measurement geometries, demonstrated a comparability of corrected emission spectra within a relative standard uncertainty of 4.2% for PTS- and 2.4% for RM-based spectral correction when measurements and calibrations were performed under identical conditions. Moreover, the emission spectra of RMs F001 to F005, certified by BAM, Federal Institute for Materials Research and Testing, were confirmed. These RMs were subsequently used for the assessment of the comparability of RM-based corrected emission spectra of field laboratories using common commercial spectrofluorometers and routine measurement conditions in part 2 of this series (subsequent paper in this issue). KW - Fluorescence KW - Photoluminescence KW - Dye KW - Uncertainty KW - Method comparison KW - Standard KW - Method comparison KW - Spectral correction KW - Spectral fluorescence standard PY - 2012 DO - https://doi.org/10.1021/ac2034503 SN - 0003-2700 SN - 1520-6882 VL - 84 IS - 9 SP - 3889 EP - 3898 PB - American Chemical Society CY - Washington, DC AN - OPUS4-25838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Berger, Georg A1 - Müller-Mai, C. A1 - Voigt, C. A1 - Gross, U. ED - Wise, D. L. T1 - Bone development and bone structure depend on surface roughness and structure of metalic implants T2 - Biomaterials and bioengineering handbook KW - Bone Development KW - Surface Structure PY - 2000 SN - 0-8247-0318-9 SP - 457 EP - 481 PB - Dekker CY - New York AN - OPUS4-878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gross, U. A1 - Müller-Mai, C. A1 - Voigt, C. A1 - Berger, Georg A1 - Spitzer, Andrea T1 - In Vivo Tests of a Highly Porous Rapidly Resorbable Dicalcium Potassium Sodium Phosphate Glass-Ceramics JF - Key engineering materials N2 - Glass-ceramics containing Ca2KNa(PO4)2 as the main crystalline phase have a solubility which is 8 times higher than that of alpha-tricalcium phosphate ceramics. When using these compositions in drug delivery systems, especially in bone, it is necessary to create a material with a high open porosity. A Ca2KNa(PO4)2-based glass-ceramic was prepared from a borosilicate glass melt. The processed material includes minor amounts of boron which are low enough for medical application. Tissue response was studied using an animal model. Particles were implanted in rabbit femurs. Bone and soft tissue development occurred at the particle interfaces. In general, most particles were enclosed in the network of trabecular bone. The advantages of using a biomaterial with high porosity (pore size of 1-3 micron), together with rapid biodegradation, bioactivity and biocompatibility, despite traces of boron, were shown. 4 refs. T2 - 14th International Symposium on Ceramics in Medicine CY - Palm Springs, CA, USA DA - 2001-11-14 PY - 2002 DO - https://doi.org/10.4028/www.scientific.net/KEM.218-220.307 SN - 1013-9826 VL - 218-220 SP - 307 EP - 310 PB - Trans Tech Publ. CY - Aedermannsdorf AN - OPUS4-1935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gross, U. A1 - Müller-Mai, C. A1 - Voigt, C. A1 - Berger, Georg A1 - Spitzer, Andrea T1 - In vivo test of a high porous rapidly resorbable dicalcium potassium sodium phosphate glass-ceramics JF - Key engineering materials T2 - 14th International Symposium on Ceramics in Medicine ; Annual meeting of the International Society for Ceramics in Medicine 2001 CY - Palm Springs, CA, USA DA - 2001-11-14 PY - 2002 SN - 1013-9826 VL - 218-220 SP - 307 EP - 310 PB - Trans Tech Publ. CY - Aedermannsdorf AN - OPUS4-1893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Bremser, Wolfram A1 - Pfeifer, Dietmar A1 - Spieles, Monika A1 - Hoffmann, Angelika A1 - DeRose, P.C. A1 - Zwinkels, J. C. A1 - Gauthier, F. A1 - Ebert, B. A1 - Taubert, R.D. A1 - Voigt, J. A1 - Hollandt, J. A1 - Macdonald, R. T1 - State-of-the art comparability of corrected emission spectra. 2. Field laboratory assessment of calibration performance using spectral fluorescence standards JF - Analytical chemistry N2 - In the second part of this two-part series on the state-of-the-art comparability of corrected emission spectra, we have extended this assessment to the broader community of fluorescence spectroscopists by involving 12 field laboratories that were randomly selected on the basis of their fluorescence measuring equipment. These laboratories performed a reference material (RM)-based fluorometer calibration with commercially available spectral fluorescence standards following a standard operating procedure that involved routine measurement conditions and the data evaluation software LINKCORR developed and provided by the Federal Institute for Materials Research and Testing (BAM). This instrument-specific emission correction curve was subsequently used for the determination of the corrected emission spectra of three test dyes, X, QS, and Y, revealing an average accuracy of 6.8% for the corrected emission spectra. This compares well with the relative standard uncertainties of 4.2% for physical standard-based spectral corrections demonstrated in the first part of this study (previous paper in this issue) involving an international group of four expert laboratories. The excellent comparability of the measurements of the field laboratories also demonstrates the effectiveness of RM-based correction procedures. KW - Fluorescence KW - Photoluminescence KW - Dye KW - Uncertainty KW - Method comparison KW - Standard KW - Method comparison KW - Spectral correction KW - Spectral fluorescence standard PY - 2012 DO - https://doi.org/10.1021/ac203451g SN - 0003-2700 SN - 1520-6882 VL - 84 IS - 9 SP - 3899 EP - 3907 PB - American Chemical Society CY - Washington, DC AN - OPUS4-27081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Berger, Georg A1 - Ploska, Ute A1 - Gross, U. A1 - Mesgarian, M. A1 - Müller-Mai, Ch. A1 - Voigt, C. T1 - Tissue response in the femur of rabbits after implantation of a new calcium titanium phosphate composition JF - Key engineering materials KW - Bone Bonding KW - Calcium Titanium Phosphate KW - Coated Implants KW - Tissue Response PY - 2001 SN - 1013-9826 VL - 192-195 SP - 383 EP - 386 PB - Trans Tech Publ. CY - Aedermannsdorf AN - OPUS4-1044 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Noble, J.E. A1 - Wang, L. A1 - Cerasoli, E. A1 - Knight, A.E. A1 - Porter, R.A. A1 - Gray, E. A1 - Howe, C. A1 - Hannes, E. A1 - Corbisier, P. A1 - Wang, J. A1 - Wu, L. A1 - Altieri, I. A1 - Patriarca, M. A1 - Hoffmann, Angelika A1 - Resch-Genger, Ute A1 - Ebert, B. A1 - Voigt, Jan A1 - Shigeri, Y. A1 - Vonsky, M.S. A1 - Konopelko, L.A. A1 - Gaigalas, A.K. A1 - Bailey, M. J. A. T1 - An international comparability study to determine the sources of uncertainty associated with a non-competitive sandwich fluorescent ELISA JF - Clinical chemistry and laboratory medicine KW - ELISA KW - Fluorescence KW - Interferon KW - Uncertainty KW - Round Robin KW - Immunoassay KW - Quality assurance KW - Fluorescein PY - 2008 SN - 1434-6621 SN - 1437-8523 VL - 46 IS - 7 SP - 1033 EP - 1045 PB - De Gruyter CY - Berlin AN - OPUS4-18283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Würth, Christian A1 - Manley, P. A1 - Voigt, R. A1 - Ahiboz, D. A1 - Becker, C. A1 - Resch-Genger, Ute T1 - Metasurface Enhanced Sensitized Photon Upconversion: Toward Highly Efficient Low Power Upconversion Applications and Nanoscale E-Field Sensors JF - Nano Letters N2 - Large-scale nanoimprinted metasurfaces based on silicon photonic crystal slabs were produced and coated with a NaYF4:Yb3+/Er3+ upconversion nanoparticle (UCNP) layer. UCNPs on these metasurfaces yield a more than 500-fold enhanced upconversion emission compared to UCNPs on planar surfaces. It is also demonstrated how the optical response of the UCNPs can be used to estimate the local field energy in the coating layer. Optical simulations using the finite element method validate the experimental results and the calculated spatial three-dimensional field Energy distribution helps us to understand the emission enhancement mechanism of the UCNPs closely attached to the metasurface. In addition, we analyzed the spectral shifts of the resonances for uncoated and coated metasurfaces and metasurfaces submerged in water to enable a prediction of the optimum layer thicknesses for different excitation wavelengths, paving the way to applications such as electromagnetic field sensors or bioassays. KW - Nanoparticles KW - Upconversion KW - Metasurface KW - Field sensor KW - Emission enhancement KW - Photonic crystal PY - 2020 DO - https://doi.org/10.1021/acs.nanolett.0c02548 VL - 20 IS - 9 SP - 6682 EP - 6689 PB - ACS Publications AN - OPUS4-51427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tonon, C. A1 - Breitenbach, Romy A1 - Voigt, Oliver A1 - Turci, F. A1 - Gorbushina, Anna A1 - Favero-Longo, S. E. T1 - Hyphal morphology and substrate porosity -rather than melanization- drive penetration of black fungi into carbonate substrates JF - Journal of Cultural Heritage N2 - Due to their ability to penetrate, deteriorate and discolour stone surfaces, rock-inhabiting black fungi represent a remarkable issue for cultural heritage conservation. Black microcolonial fungi (MCF) can also adapt to different environmental conditions, by converting from yeast-like morphology to a peculiar meristematic development with swollen cells (torulose hyphae, TH), to extremely thin structures (filamentous hyphae, FH). Furthermore, black MCF produce protective pigments: melanin, dark pigment particularly evident on light stone surfaces, and carotenoids. Black fungi produce melanin in critical, oligotrophic conditions as well as constitutively. Melanin function is mostly related to stress resistance and the ability of fungi to generate appressorial turgor to actively penetrate plant cells in pathogenic species. An involvement of melanins in stone surface penetration has been suggested, but not experimentally proved. In this work, we tested the role of hyphal melanisation in penetration mechanisms on the model black fungus Knufia petricola A95 in lab conditions. The wild-type and three mutants with introduced targeted mutations of polyketide-synthases (melanin production) and/or phytoene dehydrogenase (carotenoid synthesis) were inoculated on artificial carbonate pellets (pressed Carrara marble powder) of different porosity. After 5, 10, 17 and 27 weeks, hyphal penetration depth and spread were quantified on periodic acid Schiff-stained cross-sections of the pellets, collecting measurements separately for TH and FH. Droplet assay of the mutants on different media were conducted to determine the role of nutrients in the development of different fungal morphologies. In our in vitro study, the hyphal penetration depth, never exceeding 200 μm, was proven to be consistent with observed penetration patterns on stone heritage carbonate substrates. Pellet porosity affected penetration patterns of TH, which developed in voids of the more porous pellets, instead than actively opening new passageways. Oppositely, the thin diameter of FH allowed their penetration independently of substrate porosity. Instead, the long-hypothesized crucial role of melanin in black MCF hyphal penetration should be rejected. TH were developed within the pellets also by melanin deficient strains, and melanized strains showed an endolithic component of non-melanized TH. FH were non-melanized for all the strains, but deeply penetrated all pellet types, with higher penetration depth probably related to their potential exploratory (nutrient-seeking) role, while TH may be more related to a resistance to surface stress factors. In the melanin deficient strains, the absence of melanin caused an increased penetration rate of FH, hypothetically related to an earlier necessity to search for organic nutrients. KW - Biodeterioration KW - Bioreceptivity KW - Black microcolonial fungi KW - Marble KW - Stone cultural heritage KW - Stress tolerance PY - 2020 DO - https://doi.org/10.1016/j.culher.2020.11.003 VL - 48 SP - 244 EP - 253 PB - Elsevier Masson SAS CY - Paris, Amsterdam AN - OPUS4-51933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tian, H. A1 - Voigt, Marieke A1 - Lehmann, C. A1 - Meng, Birgit A1 - Stephan, D. ED - Middendorf, B. ED - Fehling, E. T1 - Composition and microstructure stability of cement compound under cyclic hydrothermal condition T2 - Schriftenreihe Baustoffe und Massivbau: Ultra-High Performance Concrete and High Performance Materials N2 - There have been many researches focused on the performance improvement of ultra-high performance concrete (UHPC) by autoclaving treatment. The goal of autoclaving is to increase the pozzolanic reaction, and to densify the cement stone and the transition zone which originates from the incorporation of supplementary cementitious materials (SCMs), such as silica fume, fly ash and blast furnace slag. Due to the superior properties, UHPC can also be utilized under high mechanical load and aggressive condition, for example, the fabrication of water tanks for thermal storage which is of great significance for saving energy and reducing CO2 emission. It is known that mineral stability of the hydration products of an inorganic binder is highly related to the temperature and pressure of the environment. A certain stable composition at room temperature, however, may undergo a phase transformation at high temperature and the performance decrease under this severe condition will generally be more severe. In this way, the rationale behind this deterioration under long-term hydrothermal condition involving many cycles and long duration has to be clarified, and then appropriate optimizing methods will be performed in order to obtain a kind of construction with high durability under aggressive environment. For this purpose, different types and amounts of SCMs are introduced into the standard mixture of UHPC and the phase compositions after autoclaving at 200 °C and 15.5 bar are determined by combined X-ray diffraction and scanning electron microscope. Mercury intrusion porosimeter is used to characterise the microstructure of the samples. In order to establish the relationship between microstructure and macroscopic properties, compressive and flexural strength are also investigated. T2 - HiPerMat 2020 CY - Kassel, Germany DA - 11.03.2020 KW - Hydrothermal treatment KW - UHPC KW - Composition PY - 2020 SN - 978-3-7376-0828-2 VL - 23 SP - 87 EP - 88 PB - Kassel University Press CY - Kassel AN - OPUS4-52375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -