TY - JOUR A1 - Manke, I. A1 - Kardjilov, N. A1 - Schäfer, R. A1 - Hilger, A. A1 - Grothausmann, R. A1 - Strobl, M. A1 - Dawson, M. A1 - Grünzweig, C. A1 - Tötzke, C. A1 - David, C. A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Hentschel, Manfred P. A1 - Banhart, J. T1 - Three-dimensional imaging of magnetic domains with neutron grating interferometry N2 - This paper gives a brief overview on3D imaging of magnetic domains with shearing grating neutron tomography. We investigated the three-dimensional distribution of magnetic domain walls in the bulk of a wedge-shaped FeSi single crystal. The width of the magnetic domains wasanalyzed at different locations within the crystal. Magnetic domains close to the tip of the wedge are much smaller than in the bulk. Furthermore, the three-dimensional shape of individual domains wasinvestigated. We discuss prospects and limitations of the applied measurement technique. KW - Neutron imaging KW - Tomography KW - Magnetic domains KW - Grating interferometry KW - Darkfield imaging KW - Shearing gratings KW - Talbot-Lau KW - Three-dimensional data quantification KW - Tomographic reconstruction PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-341919 SN - 1875-3892 VL - 69 SP - 404 EP - 412 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-34191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arlt, Tobias A1 - Grothausmann, R. A1 - Manke, I. A1 - Markötter, H. A1 - Hilger, A. A1 - Kardjilov, N. A1 - Tötzke, C. A1 - Banhart, J. A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Hentschel, Manfred P. A1 - Krüger, P. A1 - Haußmann, J. A1 - Hartnig, C. A1 - Wippermann, K. T1 - Tomografische Methoden für die Brennstoffzellenforschung N2 - Aufgrund des hohen Wirkungsgrades und der vielfältigen Einsatzmöglichkeiten können Brennstoffzellen einen wichtigen Beitrag zur zukünftigen Energieversorgung leisten. Für die Optimierung der Brennstoffzellentechnik ist es erforderlich, die während des Zellbetriebs ablaufenden Prozesse zu verstehen und exakt zu charakterisieren. Ein ausbalanciertes Wassermanagement ist die Grundlage für die optimale Leistungsfähigkeit einer wasserstoffbetriebenen Zelle. Das während des Betriebs entstehende Wasser muss die Membran ausreichend befeuchten, um deren Protonenleitfähigkeit aufrechtzuerhalten. Andererseits behindern zu große Wasseransammlungen in der Zelle die Gaszufuhr durch die porösen Materialien sowie in den Kanälen der Gasverteilerstrukturen. Alterungsphänomene einzelner Zellkomponenten können die Verteilung der Wasseransammlungen und somit das Wassermanagement empfindlich stören und so die Leistungsfähigkeit der Brennstoffzelle herabsetzen. Zur Analyse der Wasserverteilung werden zerstörungsfreie, bildgebende Methoden, wie die Ex-situ-Neutronentomografie und die In-situ-Synchrotronradiografie, eingesetzt. Diese Methoden können während des Brennstoffzellenbetriebs mit weiteren Messverfahren, beispielsweise der ortsaufgelösten Stromdichtemessung, kombiniert werden. Auf diese Weise werden einzelne Komponenten, wie zum Beispiel die Gasdiffusionsschichten, charakterisiert. KW - Computertomographie KW - Elektronentomographie KW - Neutronentomographie KW - Brennstoffzelle KW - Stromdichtemessung KW - Wassermanagement PY - 2013 U6 - https://doi.org/10.3139/120.110429 SN - 0025-5300 VL - 55 IS - 3 SP - 207 EP - 213 PB - Hanser CY - München AN - OPUS4-27950 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tötzke, C. A1 - Manke, I. A1 - Hartnig, C. A1 - Kuhn, R. A1 - Riesemeier, Heinrich A1 - Banhart, J. T1 - Investigation of carbon fiber gas diffusion layers by means of synchrotron X-ray tomography N2 - The 3-dimensional spatial distribution of liquid water in different gas diffusion layer (GDL) materials was analyzed using synchrotron X-ray tomography. The capability of the method was demonstrated by virtually separating the GDL components in order to facilitate individual analysis of fiber material, liquid water and gas filled pore spaces. The influence of hydrophobic surface treatment on the water distribution in the GDL was illustrated by analyzing three GDL materials with different degrees of hydrophobicity. In the least hydrophobic sample, liquid water tends to form larger clusters which stretch out about several hundred µm inside the porous GDL. In contrast, only small water clusters were found in the strongly hydrophobic material with high Polytetrafluoroethylene (PTFE)-content as the liquid is partially pressed out of the GDL. Additionally, the influence of fiber orientation on the water distribution in the felt material was demonstrated. KW - Synchrotron X-ray tomography KW - Fuel cell KW - Gas diffusion layer (GDL) materials KW - Analysis of fiber material PY - 2011 U6 - https://doi.org/10.1149/1.3635571 SN - 1938-6737 SN - 1938-5862 VL - 41 IS - 1 SP - 379 EP - 386 CY - Pennington, NJ, USA AN - OPUS4-25348 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markötter, H. A1 - Alink, R. A1 - Haußmann, J. A1 - Dittmann, K. A1 - Arlt, Tobias A1 - Wieder, F. A1 - Tötzke, C. A1 - Klages, M. A1 - Reiter, C. A1 - Riesemeier, Heinrich A1 - Scholta, J. A1 - Gerteisen, D. A1 - Banhart, J. A1 - Manke, I. T1 - Visualization of the water distribution in perforated gas diffusion layers by means of synchrotron X-ray radiography N2 - Perforated gas diffusion layers (GDLs) of polymer electrolyte membrane fuel cells (PEMFCs) were investigated by means of in-situ synchrotron X-ray radiography during operation. We found a strong influence of perforations on the water distribution and transport in the investigated Toray TGP-H-090 GDL. The water occurs mainly around the perforations, while the holes themselves show varying water distributions. Some remain dry, while most of them fill up with liquid water after a certain period or might serve as drainage volume for effective water transport. KW - Polymer electrolyte membrane fuel cell (PEMFC) KW - Radiography KW - Synchrotron KW - X-ray imaging KW - Perforated gas diffusion layer (GDL) KW - Water transport PY - 2012 U6 - https://doi.org/10.1016/j.ijhydene.2012.01.141 SN - 0360-3199 VL - 37 IS - 9 SP - 7757 EP - 7761 PB - Elsevier CY - Oxford AN - OPUS4-26434 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tötzke, C. A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Manke, I. A1 - Hilger, A. A1 - Arlt, Tobias A1 - Markötter, H. A1 - Wieder, F. A1 - Bohner, J. A1 - Schmidt, V. A1 - Banhart, J. T1 - Synchrotron tomographic study on the inhomogeneous compression of gas diffusion layers in fuel cells T2 - 10th Symposium on Fuel Cell and Battery Modelling and Experimental Validation - ModVal 10 CY - Bad Boll, Germany DA - 2013-03-19 PY - 2013 AN - OPUS4-28078 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Arlt, Tobias A1 - Manke, I. A1 - Wippermann, K. A1 - Tötzke, C. A1 - Markötter, H. A1 - Riesemeier, Heinrich A1 - Mergel, J. A1 - Banhart, J. T1 - Investigation of the three-dimensional ruthenium distribution in fresh and aged membrane electrode assemblies with synchrotron X-ray absorption edge tomography N2 - Synchrotron X-ray absorption edge imaging was used to investigate the ruthenium distribution in both fresh and aged Pt/Ru-based membrane electrode assemblies (MEA) of direct methanol fuel cells. MEAs aged in different ways were analyzed: artificially aged by MeOH depletion and aged for 1700 h in an operating fuel cell stack. An element sensitive tomographic technique – differential X-ray absorption edge tomography – was applied allowing for a 3D-visualization of the ruthenium distribution within the MEA. We found a markedly changed Ru distribution after aging which is correlated to the GDL structure, the flow field geometry, and CO2 transport in the methanol solution. KW - Edge tomography KW - Ruthenium distribution KW - Direct methanol fuel cells KW - Synchrotron X-ray KW - PtRu corrosion PY - 2011 U6 - https://doi.org/10.1016/j.elecom.2011.05.013 SN - 1388-2481 VL - 13 IS - 8 SP - 826 EP - 829 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-25243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Bernd R. A1 - Tötzke, C. A1 - Manke, I. A1 - Arlt, Tobias A1 - Markötter, H. A1 - Hilger, A. A1 - Kardjilov, N. A1 - Krüger, P. A1 - Scholta, J. T1 - Non-Destructive Analysis of Water and Media Distribution in Fuel Cells by Means of Neutron and Synchrotron X-ray Imaging T2 - 220th ECS Meeting and Electrochemical Energy Summit CY - Boston, MA, USA DA - 2011-10-09 PY - 2011 AN - OPUS4-25381 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tötzke, C. A1 - Gaiselmann, G. A1 - Osenberg, M. A1 - Bohner, J. A1 - Arlt, Tobias A1 - Markötter, H. A1 - Hilger, A. A1 - Wieder, F. A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Hentschel, Manfred P. A1 - Banhart, J. A1 - Schmidt, V. A1 - Lehnert, W. A1 - Manke, I. T1 - Three-dimensional study of compressed gas diffusion layers using synchrotron X-ray imaging N2 - We present a synchrotron X-ray tomographic study on the morphology of carbon fiber-based gas diffusion layer (GDL) material under compression. A dedicated compression device is used to provide well-defined compression conditions. A flat compression punch is employed to study the fiber geometry at different degrees of compression. Transport relevant geometrical parameters such as porosity, pore size and tortuosity distributions are calculated. The geometric properties notably change upon compression which has direct impact on transport conditions for gas and fluid flow. The availability of broad 3D paths, which are most important for the transport of liquid water from the catalyst layer through the GDL, is markedly reduced after compression. In a second experiment, we study the influence of the channel-land-pattern of the flow-field on shape and microstructure of the GDL. A flow-field compression punch is employed to reproduce the inhomogeneous compression conditions found during fuel cell assembly. While homogenously compressed underneath the land the GDL is much less and inhomogeneously compressed under the channel. The GDL material extends far into the channel volume where it can considerably influence gas and fluid flow. Loose fiber endings penetrate deeply into the channel and form obstacles for the discharge of liquid water droplets. KW - Synchrotron X-ray tomography KW - Gas diffusion layer (GDL) KW - Microstructure KW - Water transport path KW - Pore size analysis KW - Geometrical tortuosity PY - 2014 U6 - https://doi.org/10.1016/j.jpowsour.2013.12.062 SN - 0378-7753 VL - 253 SP - 123 EP - 131 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-29979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tötzke, C. A1 - Gaiselmann, G. A1 - Osenberg, M. A1 - Arlt, Tobias A1 - Markötter, H. A1 - Hilger, A. A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Schmidt, V. A1 - Lehnert, W. A1 - Manke, I. T1 - Influence of hydrophobic treatment on the structure of compressed gas diffusion layers N2 - Carbon fiber based felt materials are widely used as gas diffusion layer (GDL) in fuel cells. Their transport properties can be adjusted by adding hydrophobic agents such as polytetrafluoroethylene (PTFE). We present a synchrotron X-ray tomographic study on the felt material Freudenberg H2315 with different PTFE finishing. In this study, we analyze changes in microstructure and shape of GDLs at increasing degree of compression which are related to their specific PTFE load. A dedicated compression device mimicking the channel-land pattern of the flowfield is used to reproduce the inhomogeneous compression found in a fuel cell. Transport relevant geometrical parameters such as porosity, pore size distribution and geometric tortuosity are calculated and consequences for media transport discussed. PTFE finishing results in a marked change of shape of compressed GDLs: surface is smoothed and the invasion of GDL fibers into the flow field channel strongly mitigated. Furthermore, the PTFE impacts the microstructure of the compressed GDL. The number of available wide transport paths is significantly increased as compared to the untreated material. These changes improve the transport capacity liquid water through the GDL and promote the discharge of liquid water droplets from the cell. KW - Gas diffusion layer KW - Synchrotron Tomography KW - Compression KW - Hydrophobic treatment KW - Water transport PY - 2016 U6 - https://doi.org/10.1016/j.jpowsour.2016.05.118 SN - 0378-7753 VL - 324 SP - 625 EP - 636 PB - Elsevier CY - Amsterdam AN - OPUS4-36918 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markötter, H. A1 - Haußmann, J. A1 - Alink, R. A1 - Dittmann, K. A1 - Tötzke, C. A1 - Krüger, P. A1 - Klages, M. A1 - Arlt, Tobias A1 - Müller, Bernd R. A1 - Riesemeier, Heinrich A1 - Scholta, J. A1 - Gerteisen, D. A1 - Manke, I. A1 - Banhart, J. T1 - Investigation of fuel cell materials and liquid water transport by means of synchrotron imaging N2 - Synchrotron imaging allows addressing various important issues in fuel cell research, for example water distribution and transport. The water distribution in polymer electrolyte membrane fuel cells (PEMFCs) was observed quasi in-situ directly after operation by means of synchrotron tomography. The 3D data set was compared with the tomogram of a dry cell in order to separate the water distribution from cell materials. Engineered transport pathways realized by perforating holes through the gas diffusion layer (GDL) are a recent approach to optimize water transport and cell performance. For some parameter sets a cell performance increase and an improvement of stabilization have already been proven. We present high resolution investigations of the water distribution in perforated GDLs of operating PEMFCs by means of in-situ synchrotron radiography. The surrounding areas of the holes exhibited a distinct hydrophilic character. KW - Gas-diffusion layers KW - Resolution neutron-radiography KW - X-ray radiography KW - Visualization KW - PEMFC PY - 2013 U6 - https://doi.org/10.1149/04529.0195ecst SN - 1938-6737 SN - 1938-5862 VL - 45 IS - 29 SP - 195 EP - 202 CY - Pennington, NJ, USA AN - OPUS4-30545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -