TY - JOUR A1 - Schmidt, C. A1 - Schierack, P. A1 - Gerber, U. A1 - Schröder, C. A1 - Choi, Youngeun A1 - Bald, Ilko A1 - Lehmann, W. A1 - Rödiger, S. T1 - Streptavidin Homologues for Applications on Solid Surfaces at High Temperatures N2 - One of the most commonly used bonds between two biomolecules is the bond between biotin and streptavidin (SA) or streptavidin homologues (SAHs). A high dissociation constant and the consequent high-temperature stability even allows for its use in nucleic acid detection under polymerase chain reaction (PCR) conditions. There are a number of SAHs available, and for assay design, it is of great interest to determine as to which SAH will perform the best under assay conditions. Although there are numerous single studies on the characterization of SAHs in solution or selected solid phases, there is no systematic study comparing different SAHs for biomolecule-binding, hybridization, and PCR assays on solid phases. We compared streptavidin, core streptavidin, traptavidin, core traptavidin, neutravidin, and monomeric streptavidin on the surface of microbeads (10–15 μm in diameter) and designed multiplex microbead-based experiments and analyzed simultaneously the binding of biotinylated oligonucleotides and the hybridization of oligonucleotides to complementary capture probes. We also bound comparably large DNA origamis to capture probes on the microbead surface. We used a real-time fluorescence microscopy imaging platform, with which it is possible to subject samples to a programmable time and temperature profile and to record binding processes on the microbead surface depending on the time and temperature. With the exception of core traptavidin and monomeric streptavidin, all other SA/SAHs were suitable for our investigations. We found hybridization efficiencies close to 100% for streptavidin, core streptavidin, traptavidin, and neutravidin. These could all be considered equally suitable for hybridization, PCR applications, and melting point analysis. The SA/SAH–biotin bond was temperature-sensitive when the oligonucleotide was mono-biotinylated, with traptavidin being the most stable followed by streptavidin and neutravidin. Mono-biotinylated oligonucleotides can be used in experiments with temperatures up to 70 °C. When oligonucleotides were bis-biotinylated, all SA/SAH–biotin bonds had similar temperature stability under PCR conditions, even if they comprised a streptavidin variant with slower biotin dissociation and increased mechanostability. KW - Biopolymers Probes KW - Hybridization KW - Fluorescence KW - Genetics PY - 2020 DO - https://doi.org/10.1021/acs.langmuir.9b02339 VL - 36 IS - 2 SP - 628 EP - 636 PB - American Chemical Society Publication CY - Washington AN - OPUS4-50357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rauchegger, C. A1 - Bayley, S. A1 - Schröder, Volkmar A1 - Thévenin, D. T1 - Dispersion of heavy gases - experimental results and numerical simulations N2 - The hazardous potential of accidental heavy gas releases, especially those involving flammable and toxic gases, is widely known. In order to predict the area in which these gases are in hazardous concentrations, an estimation of the dispersion of these gases must be carried out. While the hazardous area for flammable heavy gases is determined by the lower flammability limit (ca. >1 vol%), the release of toxic heavy gases can result in a much larger hazardous area. Toxic gases, even in very low concentrations (ca. <3,000 ppm), have the potential to be highly damaging. State-of-the-art dispersion models, such as the VDI Guideline 3783, can be used to estimate the dispersion of heavy gases. However, VDI 3783 gives no method for the prediction of the height and width of a heavy gas cloud, which are both required for quantitative risk analysis as well as for a possible coupling of a Lagrangian particle model with the VDI 3783 heavy gas dispersion model. Therefore, further calculation methods were used to describe these dimensions and were evaluated against experimental studies of the length, width, and height of the heavy and neutral gas field. In addition to that the influence of the source height on the heavy gas dispersion was also examined KW - Process safety KW - Heavy gas KW - Numerical simulation KW - Explosion protection PY - 2015 DO - https://doi.org/10.1002/prs.11723 SN - 1066-8527 SN - 1547-5913 SN - 0278-4513 VL - 34 IS - 3 SP - 280 EP - 285 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-34756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brenneis, Rudolf A1 - Schröder, W. A1 - Altrichter, B. A1 - Schröter, C. T1 - Charakterisierung von magnesia-aluminiumspinellähnlichen Phasen in schmelzgegossenen Korund-Hochtemperatur-Werkstoffen PY - 1993 SN - 0341-0676 SN - 0341-0439 VL - 126 IS - 9 SP - 558 EP - 563 PB - Sprechsaal-Verl. CY - Coburg AN - OPUS4-12651 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Volkmar A1 - Hieronymus, Hartmut A1 - Zimmermann, C. A1 - Seebauer, F. A1 - Wieltsch, U. T1 - Flammenausbreitung auf Flüssigkeitsoberflächen unterhalb des Flammpunktes N2 - In technischen Ozonolyseanlagen kommen gasförmige Oxidationsmittel mit brennbaren Flüssigkeiten in Kontakt. Dies geschieht in der Regel bei tiefen Temperaturen, weit unterhalb des Flammpunktes. Trotzdem ist es in einer Anlage zu einer Explosion gekommen, deren Ursache möglicherweise eine Flammenausbreitung auf der Oberfläche des Lösungsmittels war. In Laborversuchen ist dieses Phänomen in Abhängigkeit von der Gasphasenzusammensetzung, vom Lösungsmittel, vom Druck und von der Temperatur untersucht worden. KW - Anlagensicherheit KW - Flammenpropagation KW - Ozonolyse KW - Sicherheitstechnik PY - 2007 DO - https://doi.org/10.1002/cite.200700024 SN - 0009-286X SN - 1522-2640 VL - 79 IS - 12 SP - 2124 EP - 2128 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-16446 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sloniec, Jagoda A1 - Schnurr, M. A1 - Witte, C. A1 - Resch-Genger, Ute A1 - Schröder, L. A1 - Hennig, Andreas T1 - Biomembrane interactions of functionalized cryptophane-A: combined fluorescence and 129Xe NMR studies of a bimodal contrast agent N2 - Fluorescent derivatives of the 129Xe NMR contrast agent cryptophane-A were obtained by functionalization with near infrared fluorescent dyes DY680 and DY682. The resulting conjugates were spectrally characterized, and their interaction with giant and large unilamellar vesicles of varying phospholipid composition was analyzed by fluorescence and NMR spectroscopy. In the latter, a chemical exchange saturation transfer with hyperpolarized 129Xe (Hyper-CEST) was used to obtain sufficient sensitivity. To determine the partitioning coefficients, we developed a method based on fluorescence resonance energy transfer from Nile Red to the membrane-bound conjugates. This indicated that not only the hydrophobicity of the conjugates, but also the phospholipid composition, largely determines the membrane incorporation. Thereby, partitioning into the liquid-crystalline phase of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine was most efficient. Fluorescence depth quenching and flip-flop assays suggest a perpendicular orientation of the conjugates to the membrane surface with negligible transversal diffusion, and that the fluorescent dyes reside in the interfacial area. The results serve as a basis to differentiate biomembranes by analyzing the Hyper-CEST signatures that are related to membrane fluidity, and pave the way for dissecting different contributions to the Hyper-CEST signal. KW - Biosensors KW - Fluorescence KW - FRET KW - Hyperpolarization KW - Lipids KW - Xenon PY - 2013 DO - https://doi.org/10.1002/chem.201203773 SN - 0947-6539 SN - 1521-3765 VL - 19 IS - 9 SP - 3110 EP - 3118 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-28980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wasternack, J. A1 - Schröder, H. V. A1 - Witte, J. F. A1 - Ilisson, M. A1 - Hupatz, H. A1 - Hille, J. F. A1 - Gaedke, M. A1 - Valkonen, A. M. A1 - Sobottka, S. A1 - Krappe, A. A1 - Schubert, M. A1 - Paulus, B. A1 - Rissanen, K. A1 - Sarkar, B. A1 - Eigler, S. A1 - Resch-Genger, Ute A1 - Schalley, C. A. T1 - Switchable protection and exposure of a sensitive squaraine dye within a redox active rotaxane N2 - In nature,molecular environments in proteins can sterically protect and stabilize reactive species such as organic radicals through non-covalent interactions.Here, wereport a near-infrared fluorescent rotaxane in which the stabilization of a chemically labile squaraine fluorophore by the coordination of a tetralactam macrocycle can be controlled chemically and electrochemically. The rotaxane can be switched between two co-conformations inwhich thewheel either stabilizes or exposes the fluorophore. Coordination by the wheel affects the squaraine’s stability across four redox states and renders the radical anion significantly more stable—by a factor of 6.7—than without protection by a mechanically bonded wheel. Furthermore, the fluorescence properties can be tuned by the redox reactions in a stepwise manner. Mechanically interlockedmolecules provide an excellent scaffold to stabilize and selectively expose reactive species in a co-conformational switching process controlled by external stimuli. KW - Fluorescence KW - Dye KW - Sensor KW - Quantum yield KW - Spectroscopy KW - Photophysics KW - Synthesis KW - Squaraine KW - Switch KW - Redox-active KW - Rotaxane PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-614959 DO - https://doi.org/10.1038/s42004-024-01312-1 VL - 7 SP - 1 EP - 11 AN - OPUS4-61495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schoder, S. A1 - Schröder, H. V. A1 - Cera, L. A1 - Puttreddy, R. A1 - Güttler, Arne A1 - Resch-Genger, Ute A1 - Rissanen, K. A1 - Schalley, C. A. T1 - Strong Emission Enhancement in pH-Responsive 2:2 Cucurbit[8]uril Complexes N2 - Organic fluorophores, particularly stimuli-responsive molecules, are very interesting for biological and material sciences applications, but frequently limited by aggregation- and rotation-caused photoluminescence quenching. A series of easily accessible bipyridinium fluorophores, whose emission is quenched by a twisted intramolecular charge-transfer (TICT) mechanism, is reported. Encapsulation in a cucurbit[7]uril host gave a 1:1 complex exhibiting a moderate emission increase due to destabilization of the TICT state inside the apolar cucurbituril cavity. A much stronger fluorescence enhancement is observed in 2:2 complexes with the larger cucurbit[8]uril, which is caused by additional conformational restriction of rotations around the aryl/aryl bonds. Because the cucurbituril complexes are pH switchable, this system represents an efficient supramolecular ON/OFF fluorescence switch. KW - Sensor KW - pH KW - Dye KW - Supramolecular chemistry KW - Synthesis KW - Host-guest interaction KW - Fluorescence KW - Enhancement KW - Curcubituril KW - Macrocyclus KW - Solid state PY - 2019 DO - https://doi.org/10.1002/chem.201806337 SN - 0947-6539 VL - 25 IS - 13 SP - 3257 EP - 3261 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-47599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Jakob A1 - Mishurova, Tatiana A1 - Fritsch, Tobias A1 - Serrano-Munoz, Itziar A1 - Evans, Alexander A1 - Sprengel, Maximilian A1 - Klaus, M. A1 - Genzel, C. A1 - Schneider, J. A1 - Bruno, Giovanni T1 - On the influence of heat treatment on microstructure and mechanical behavior of laser powder bed fused Inconel 718 N2 - A range of heat treatments have been developed for wrought Inconel 718 to obtain desired properties. For additively manufactured Inconel 718, the recently developed standard ASTM F3301 provides guidance for heat treatment of powder bed fusion specimens. Although this standard is based on standards developed for wrought Inconel 718, it does not include direct aging. Since direct aging reduces the number of processing steps, it can result in a post processing cost reduction if the desired properties are obtained. In this study, we characterized the microstructure and tensile behavior of Inconel 718 specimens produced by a laser powder bed fusion process. The specimens were heat treated according to two different routines after stress relieving: a full heat Treatment versus a one-step direct aging process. Differences in the resulting texture and grain morphology were observed. The ex-situ stress-strain behavior was broadly similar. However, a slight increase in yield strength was observed for the direct aged specimen. In order to understand this behavior, investigations with in-situ synchrotron Energy dispersive X-ray diffraction tensile testing revealed differences in the load partitioning among different Crystal directions. Importantly, the elastic anisotropy expressed by the magnitude of the diffraction elastic constants showed a dependency on the microstructures. KW - Electron microscopy KW - X-ray analysis KW - Inconel 718 KW - Additive Manufacturing KW - Mechanical behavior KW - Diffraction elastic constants PY - 2021 DO - https://doi.org/10.1016/j.msea.2020.140555 VL - 805 SP - 40555 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-52142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Janssen, H. A1 - Bringmann, J.C. A1 - Emonts, B. A1 - Schröder, Volkmar T1 - Safety-related studies on hydrogen production in high-pressure electrolysers N2 - At Juelich Research Center the prototype of an alkaline 120-bar electrolyser has been developed and built. Constructive and process-engineering measures must be taken to ensure the safe operation of such facilities. Potential hazards occur due to the high operating pressure in conjunction with the reactivity of the product gases and the electrolyte. First of all, the operating mode and technical features of the Juelich high-pressure electrolyser will be dealt with. Within the framework of a parametric study, the potential for weight reduction of the prototype while observing the rules for pressure vessel design will be shown. The Federal Institute for Materials Research and Testing in Berlin has performed measurements concerning the explosion limits of H2/O2 mixtures at different temperatures and pressures up to 200 bars. At an electrolysis test rig of IWV-3, which can also be operated up to 200 bars, investigations were carried out concerning the gas composition on the H2 and O2 path under different operating conditions. These measurement series were compared to the explosion limits determined and evaluated to derive safety measures required for the operation of high-pressure electrolysers. KW - High-pressure electrolysis KW - Electrolysis KW - Pressure vessel KW - Explosion limits KW - Explosion pressures PY - 2004 DO - https://doi.org/10.1016/j.ijhydene.2003.08.014 SN - 0360-3199 VL - 29 SP - 759 EP - 770 PB - Elsevier CY - Oxford AN - OPUS4-3534 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -