TY - JOUR A1 - Ahmed, A. A. A. A1 - Alegret, N. A1 - Almeida, B. A1 - Alvarez-Puebla, R. A1 - Andrews, A. M. A1 - Ballerini, L. A1 - Barrios-Capuchino, J. J. A1 - Becker, C. A1 - Blick, R. H. A1 - Bonakdar, S. A1 - Chakraborty, I. A1 - Chen, X. A1 - Cheon, J. A1 - Chilla, G. A1 - Conceicao, A. L. C. A1 - Delehanty, J. A1 - Dulle, M. A1 - Efros, A. L. A1 - Epple, M. A1 - Fedyk, M. A1 - Feliu, N. A1 - Feng, M. A1 - Fernandez-Chacon, R. A1 - Fernandez-Cuesta, I. A1 - Fertig, N. A1 - Förster, S. A1 - Garrido, J. A. A1 - George, M. A1 - Guse, A. H. A1 - Hampp, N. A1 - Harberts, J. A1 - Han, J. A1 - Heekeren, H. R. A1 - Hofmann, U. G. A1 - Holzapfel, M. A1 - Hosseinkazemi, H. A1 - Huang, Y. A1 - Huber, P. A1 - Hyeon, T. A1 - Ingebrandt, S. A1 - Ienca, M. A1 - Iske, A. A1 - Kang, Y. A1 - Kasieczka, G. A1 - Kim, D.-H. A1 - Kostarelos, K. A1 - Lee, J.-H. A1 - Lin, K.-W. A1 - Liu, S. A1 - Liu, X. A1 - Liu, Y. A1 - Lohr, C. A1 - Mailänder, V. A1 - Maffongelli, L. A1 - Megahed, S. A1 - Mews, A. A1 - Mutas, M. A1 - Nack, L. A1 - Nakatsuka, N. A1 - Oertner, T. G. A1 - Offenhäusser, A. A1 - Oheim, M. A1 - Otange, B. A1 - Otto, F. A1 - Patrono, E. A1 - Peng, B. A1 - Picchiotti, A. A1 - Pierini, F. A1 - Pötter-Nerger, M. A1 - Pozzi, M. A1 - Pralle, A. A1 - Prato, M. A1 - Qi, B. A1 - Ramos-Cabrer, P. A1 - Resch-Genger, Ute A1 - Ritter, N. A1 - Rittner, M. A1 - Roy, S. A1 - Santoro, F. A1 - Schuck, N. W. A1 - Schulz, F. A1 - Seker, E. A1 - Skiba, M. A1 - Sosniok, M. A1 - Stephan, H. A1 - Wang, R. A1 - Wang, T. A1 - Wegner, Karl David A1 - Weiss, P. S. A1 - Xu, M. A1 - Yang, C. A1 - Zargarin, S. S. A1 - Zeng, Y. A1 - Zhou, Y. A1 - Zhu, D. A1 - Zierold, R. A1 - Parak, W. J. T1 - Interfacing with the Brain: How Nanotechnology Can Contribute N2 - Interfacing artificial devices with the human brain is the central goal of neurotechnology. Yet, our imaginations are often limited by currently available paradigms and technologies. Suggestions for brain−machine interfaces have changed over time, along with the available technology. Mechanical levers and cable winches were used to move parts of the brain during the mechanical age. Sophisticated electronic wiring and remote control have arisen during the electronic age, ultimately leading to plug-and-play computer interfaces. Nonetheless, our brains are so complex that these visions, until recently, largely remained unreachable dreams. The general problem, thus far, is that most of our technology is mechanically and/or electrically engineered, whereas the brain is a living, dynamic entity. As a result, these worlds are difficult to interface with one another. Nanotechnology, which encompasses engineered solid-state objects and integrated circuits, excels at small length scales of single to a few hundred nanometers and, thus, matches the sizes of biomolecules, biomolecular assemblies, and parts of cells. Consequently, we envision nanomaterials and nanotools as opportunities to interface with the brain in alternative ways. Here, we review the existing literature on the use of nanotechnology in brain−machine interfaces and look forward in discussing perspectives and limitations based on the authors’ expertise across a range of complementary disciplines from neuroscience, engineering, physics, and chemistry to biology and medicine, computer science and mathematics, and social science and jurisprudence. We focus on nanotechnology but also include information from related fields when useful and complementary. KW - Nanoneuro interface KW - Brain-on-a-chip KW - Nanostructured interface KW - Electrode arrays KW - Neuro-implants KW - Advanced nanomaterials KW - Quality assurance PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634893 DO - https://doi.org/10.1021/acsnano.4c10525 SN - 1936-086X VL - 19 IS - 11 SP - 10630 EP - 10717 PB - ACS Publications AN - OPUS4-63489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bothe, Martin A1 - Mya, K.Y. A1 - Lin, E.M.J. A1 - Yeo, C. C. A1 - Lu, X. A1 - He, C. A1 - Pretsch, Thorsten T1 - Triple-shape properties of star-shaped POSS-polycaprolactone polyurethane networks N2 - Here, we present an investigation of the triple-shape properties of star-shaped polyhedral oligomeric silsesquioxane-poly(ε-caprolactone) polyurethanes (SPOSS-PUs), which have three-dimensional network structures. In a typical 'triple-shape functionalization process', mostly consisting of two tensile deformations at different temperatures, chain immobilization of the polymer network component poly(ε-caprolactone) (PCL) was successfully realized first through crystallization and then through vitrification. Subsequently, large parts of the respective strains were released under stress-free recovery conditions. The two-fold fixed ('programmed') specimens responded to heating with two independent length contractions (switching steps); the first shape change was associated with PCL devitrification and the second one with the melting of hitherto crystalline PCL. It was revealed that the triple-shape properties of SPOSS-PU networks considerably depend on PCL network chain length. When applying exactly the same 'triple-shape creation procedure', larger strain releases were detected in the first transition for polymers with a higher PCL network chain length, whereas the second transition was more accentuated for SPOSS-PU networks with a shorter PCL chain length. In the course of thermo-mechanical cycling, the formation of a neck during the second tensile deformation was repeatedly detected for SPOSS-PUs with higher PCL network chain length; in the subsequent recovery process the specimens even exhibited the highest total strain recoverability. Finally, gradual strain release could be achieved at temperatures below the PCL melting transition through the selection of up to four temperature holding steps, at which every time stable shapes were formed. KW - Shape memory polymer KW - Active polymer KW - Triple-shape polymer KW - Hybrid star-shaped polymer KW - POSS-polycaprolactone polyurethanes KW - Thermo-mechanical properties PY - 2012 DO - https://doi.org/10.1039/c1sm06474f SN - 1744-683X VL - 8 IS - 4 SP - 965 EP - 972 PB - RSC Publ. CY - Cambridge AN - OPUS4-25260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dutto, Paola A1 - Stickle, M. M. A1 - Pastor, M. A1 - Manzanal, D. A1 - Yague, A. A1 - Tayyebi, S. A1 - Lin, C. A1 - Elizalde, M. D. ED - Cervera, Miguel T1 - Modelling of fluidised geomaterials: the case of the Aberfan and the Gypsum tailings impoundment flowslides N2 - The choice of a pure cohesive or a pure frictional viscoplastic model to represent the rheological behaviour of a flowslide is of paramount importance in order to obtain accurate results for real cases. The principal Goal of the present work is to clarify the influence of the type of viscous model—pure cohesive versus pure frictional—with the numerical reproduction of two different real flowslides that occurred in 1966: the Aberfan flowslide and the Gypsum tailings impoundment flowslide. In the present work, a depth-integrated model based on the v-pw Biot–Zienkiewicz formulation, enhanced with a diffusion-like equation to account for the pore pressure Evolution within the soil mass, is applied to both 1966 cases. For the Aberfan flowslide, a frictional viscous model based on Perzyna viscoplasticity is considered, while a pure cohesive viscous model (Bingham model) is considered for the case of the Gypsum flowslide. The numerical approach followed is the SPH method, which has been enriched by adding a 1D finite difference grid to each SPH node in order to improve the description of the pore water evolution in the propagating mixture. The results obtained by the performed simulations are in agreement with the documentation obtained through the UK National Archive (Aberfan flowslide) and the International Commission of large Dams (Gypsum flowslide). KW - Aberfan flowslide KW - SPH KW - Landslide propagation modelling KW - Perzyna viscoplasticity PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-410493 DO - https://doi.org/10.3390/ma10050562 SN - 1996-1944 VL - 10 IS - 5 SP - 562, 1 EP - 562, 21 AN - OPUS4-41049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fernández, L. A1 - Lin, Z. A1 - Schneider, Rudolf A1 - Esteves, V. I. A1 - Cunha, Â. A1 - Tomé, J. P. C. T1 - Antimicrobial Photodynamic Activity of Cationic Nanoparticles Decorated with Glycosylated Photosensitizers for Water Disinfection N2 - The antimicrobial photodynamic approach has been demonstrated as an efficient and sustainable process for the eradication of microbial pathogens. In this work, silica-coated Magnetite nanoparticles (NPs) were used as carriers of glycosylated porphyrins and phthalocyanines. Their subsequent cationization resulted in the production of stable antimicrobial photosensitizing materials, effective against E. coli. Suspensions of the photocatalysts in water present bimodal size distributions formed by big clusters and small NPs with hydrodynamic diameters between 8 and 38 nm. The presence of small NPs in the suspensions is related to an effective photodynamic inactivation (PDI) of E. coli cells. Glycosylation of the PS showed a positive effect on the PDI performance, which could be related to a higher accumulation of the photocatalyst over the bacterial cell membrane. In addition, these biocidal agents proved to be photostable and their photoactive performance decreased only between 23% and 28% upon 5 PDI cycles, mostly because of the loss of material between cycles, which makes them promising materials for water disinfection purposes. KW - Photodynamische Inaktivierung KW - E. coli KW - Photokatalyse KW - Bakterien KW - Nanopartikel KW - Photosensibilisator KW - Porphyrin KW - Phthalocyanin PY - 2018 DO - https://doi.org/10.1002/cptc.201700169 SN - 2367-0932 VL - 2 IS - 7 SP - 596 EP - 605 PB - Wiley VHC CY - Weinheim AN - OPUS4-45684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Möhlmann, Lennart A1 - Chang, G.-H. A1 - Reddy, G. M. A1 - Lee, C.-J. A1 - Lin, W. T1 - Organocatalytic Enantioselective Synthesis of Tetrahydrofluoren-9- ones via Vinylogous Michael Addition/Henry Reaction Cascade of 1,3-Indandione-Derived Pronucleophiles N2 - An unprecedented organocatalytic enantioselective vinylogous Michael addition/Henry cyclization cascade is presented for the synthesis of highly substituted tetrahydrofluoren-9-ones 3 employing novel 1,3-indandionederived pronucleophiles 1a−g and nitroalkenes 2. Following a very simple protocol, a wide range of products were obtained in good to excellent yields and with excellent enantioinduction (43−98% yield, up to 98% ee). The reaction proceeded with excellent diastereocontrol despite the simultaneous generation of four stereogenic centers. Surprisingly, when 2-(1-phenylethylidene)-1H-indandione (1h) was used as a pronucleophile, no cyclization was observed, and only Michael addition adducts 4a−x were furnished in very good yields and excellent enantioselectivities. KW - square amide KW - organocatalysis KW - cascade reaction KW - enatioselective PY - 2016 DO - https://doi.org/10.1021/acs.orglett.5b03663 SP - 688 EP - 691 AN - OPUS4-36952 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Rudolf A1 - Fernandez, L. A1 - Borzecka, W. A1 - Lin, Z. A1 - Huvaere, K. A1 - Esteves, V. I. A1 - Cunha, A. A1 - Tome, J. P. C. T1 - Nanomagnet-photosensitizer hybrid materials for the degradation of 17 beta-estradiol in batch and flow modes N2 - The preparation of porphyrins and phthalocyanines covalently attached onto nanostructured magnetic supports consisting of magnetite nanoparticles coated with an amorphous silica shell is reported. The easy recovery of these heterogeneous photocatalysts, just by applying an external magnetic field, allows their reuse in multiple treatment cycles. The photocatalytic activity of the non-immobilized photosensitizers and the obtained hybrid materials was evaluated in the degradation of 17 beta-estradiol, as a model organic pollutant present in water, using batch and flow mode treatment systems, assisted by visible light radiation (4 mW cm(-2)). The flow mode system potentiated the photocatalytic capacity of these novel hybrid materials. In order to improve the process, further studies based on different photocatalyst concentration and pH conditions were performed. Reuse capacity of these materials was investigated upon three photocatalytic cycles. KW - Photodegradation KW - 17 beta-Estradiol KW - Porphyrin PY - 2017 DO - https://doi.org/10.1016/j.dyepig.2017.04.010 SN - 0143-7208 VL - 142 SP - 535 EP - 543 PB - Elsevier Ltd. AN - OPUS4-43308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westwood, S. A1 - Josephs, R. A1 - Choteau, T. A1 - Daireaux, A. A1 - Mesquida, C. A1 - Wielgosz, R. A1 - Rosso, A. A1 - de Arechavaleta, M.R. A1 - Davies, S. A1 - Wang, H. A1 - do Rego, E.C.P. A1 - Rodrigues, J.M. A1 - de Freitas Guimaraes, E. A1 - Sousa, M.V.B. A1 - Monteiro, T.M. A1 - das Neves Valente, L.A. A1 - Violante, F.G.M. A1 - Almeida, R. R. R. A1 - Quaresma, M.C.B. A1 - Nogueira, R. A1 - Windust, A. A1 - Dai, X. A1 - Li, X. A1 - Zhang, W. A1 - Li, M. A1 - Shao, M. A1 - Wei, C. A1 - Wong, S.-K. A1 - Cabillic, J. A1 - Gantois, F. A1 - Philipp, Rosemarie A1 - Pfeifer, Dietmar A1 - Hein, Sebastian A1 - Klyk-Seitz, Urszula-Anna A1 - Ishikawa, K. A1 - Castro, E. A1 - Gonzalez, N. A1 - Krylov, A. A1 - Lin, T.T. A1 - Kooi, L.T. A1 - Fernandes-Whaley, M. A1 - Prévoo, D. A1 - Archer, M. A1 - Visser, R. A1 - Nlhapo, N. A1 - de Vos, B. A1 - Ahn, S. A1 - Pookrod, P. A1 - Wiangnon, K. A1 - Sudsiri, N. A1 - Muaksang, K. A1 - Cherdchu, C. A1 - Gören, A.C. A1 - Bilsel, M. A1 - LeGoff, T. A1 - Bearden, D. A1 - Bedner, M. A1 - Duewer, D. A1 - Hancock, D. A1 - Lang, B. A1 - Lippa, K. A1 - Schantz, M. A1 - Sieber, j. T1 - Final report on key comparison CCQM-K55.b (aldrin): An international comparison of mass friction purity assignment of aldrin N2 - Under the auspices of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a key comparison, CCQM K55.b, was coordinated by the Bureau International des Poids et Mesures (BIPM) in 2010/2011. Nineteen national measurement institutes and the BIPM participated. Participants were required to assign the mass fraction of aldrin present as the main component in the comparison sample for CCQM-K55.b which consisted of technical grade aldrin obtained from the National Measurement Institute Australia that had been subject to serial recrystallization and drying prior to sub-division into the units supplied for the comparison. Aldrin was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of organic compounds of medium structural complexity [molar mass range 300 Da to 500 Da] and low polarity (pKOW < -2) for which related structure impurities can be quantified by capillary gas phase chromatography (GC). The key comparison reference value (KCRV) for the aldrin content of the material was 950.8 mg/g with a combined standard uncertainty of 0.85 mg/g. The KCRV was assigned by combination of KCRVs assigned by consensus from participant results for each orthogonal impurity class. The relative expanded uncertainties reported by laboratories having results consistent with the KCRV ranged from 0.3% to 0.6% using a mass balance approach and 0.5% to 1% using a qNMR method. The major analytical challenge posed by the material proved to be the detection and quantification of a significant amount of oligomeric organic material within the sample and most participants relying on a mass balance approach displayed a positive bias relative to the KCRV (overestimation of aldrin content) in excess of 10 mg/g due to not having adequate procedures in place to detect and quantify the non-volatile content–specifically the non-volatile organics content–of the comparison sample. There was in general excellent agreement between participants in the identification and the quantification of the total and individual related structure impurities, water content and the residual solvent content of the sample. The comparison demonstrated the utility of 1H NMR as an independent method for quantitative analysis of high purity compounds. In discussion of the participant results it was noted that while several had access to qNMR estimates for the aldrin content that were inconsistent with their mass balance determination they decided to accept the mass balance result and assumed a hidden bias in their NMR data. By contrast, laboratories that placed greater confidence in their qNMR result were able to resolve the discrepancy through additional studies that provided evidence of the presence of non-volatile organic impurity at the requisite level to bring their mass balance and qNMR estimates into agreement. PY - 2012 DO - https://doi.org/10.1088/0026-1394/49/1A/08014 SN - 0026-1394 SN - 1681-7575 VL - 49 IS - CCQM-K55.b Final Report October 2012 SP - 1 EP - 41 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-26831 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westwood, S. A1 - Josephs, R. A1 - Choteau, T. A1 - Daireaux, A. A1 - Stoppacher, N. A1 - Wielgosz, R. A1 - Davies, S. A1 - do Rego, E. A1 - Wollinger, W. A1 - Garrido, B. A1 - Fernandes, J. A1 - Lima, J. A1 - Oliveira, R. A1 - de Sena, R. A1 - Windust, A. A1 - Huang, T. A1 - Dai, X. A1 - Quan, C. A1 - He, H. A1 - Zhang, W. A1 - Wei, C. A1 - Li, N. A1 - Gao, D. A1 - Liu, Z. A1 - Lo, M. A1 - Wong, W. A1 - Pfeifer, Dietmar A1 - Koch, Matthias A1 - Dorgerloh, Ute A1 - Rothe, Robert A1 - Philipp, Rosemarie A1 - Hanari, N. A1 - Rezali, M. A1 - Arzate, C. A1 - Berenice, M. A1 - Caballero, V. A1 - Osuna, M. A1 - Krylov, A. A1 - Kharitonov, S. A1 - Lopushanskaya, E. A1 - Liu, Q. A1 - Lin, T. A1 - Fernandes-Whaley, M. A1 - Quinn, L. A1 - Nhlapo, N. A1 - Prevoo-Franzsen, D. A1 - Archer, M. A1 - Kim, B. A1 - Baek, S. A1 - Lee, S. A1 - Lee, J. A1 - Marbumrung, S. A1 - Kankaew, P. A1 - Chaorenpornpukdee, K. A1 - Chaipet, T. A1 - Shearman, K. A1 - Gören, A. A1 - Gündüz, S. A1 - Yilmaz, H. A1 - Un, I. A1 - Bilsel, G. A1 - Clarkson, C. A1 - Bedner, M. A1 - Camara, J. A1 - Lang, B. A1 - Lippa, K. A1 - Nelson, M. A1 - Toman, B. A1 - Yu, L. T1 - Mass fraction assignment of folic acid in a high purity material - CCQM-K55.d (Folic acid) Final Report N2 - The comparison required the assignment of the mass fraction of folic acid present as the main component in the comparison sample. Performance in the comparison is representative of a laboratory's measurement capability for the purity assignment of organic compounds of medium structural complexity [molecular weight range 300–500] and high polarity (pKOW < −2). Methods used by the eighteen participating NMIs or DIs were based on a mass balance (summation of impurities) or qNMR approach, or the combination of data obtained using both methods. The qNMR results tended to give slightly lower values for the content of folic acid, albeit with larger associated uncertainties, compared with the results obtained by mass balance procedures. Possible reasons for this divergence are discussed in the report, without reaching a definitive conclusion as to their origin. The comparison demonstrates that for a structurally complex polar organic compound containing a high water content and presenting a number of additional analytical challenges, the assignment of the mass fraction content property value of the main component can reasonably be achieved with an associated relative standard uncertainty in the assigned value of 0.5% KW - CCQM key comparison KW - Purity assessment KW - Folic acid PY - 2018 UR - https://www.bipm.org/utils/common/pdf/final_reports/QM/K55/CCQM-K55.d.pdf DO - https://doi.org/10.1088/0026-1394/55/1A/08013 VL - 55 IS - Technical Supplement, 2018 SP - 08013, 1 EP - 38 PB - Institute of Physics Publishing (IOP) ; Bureau International des Poids et Mesures AN - OPUS4-44999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westwood, S. A1 - Josephs, R. A1 - Choteau, T. A1 - Daireaux, A. A1 - Wielgosz, R. A1 - Davies, S. A1 - Moad, M. A1 - Chan, B. A1 - Munoz, A. A1 - Conneely, P. A1 - Ricci, M. A1 - Do Rego, E.C.P. A1 - Garrido, B.C. A1 - Violante, F.G.M. A1 - Windust, A. A1 - Dai, X. A1 - Huang, T. A1 - Zhang, W. A1 - Su, F. A1 - Quan, C. A1 - Wang, H. A1 - Lo, M. A1 - Wong, W. A1 - Gantois, F. A1 - Lalerle, B. A1 - Dorgerloh, Ute A1 - Koch, Matthias A1 - Klyk-Seitz, Urszula-Anna A1 - Pfeifer, Dietmar A1 - Philipp, Rosemarie A1 - Piechotta, Christian A1 - Recknagel, Sebastian A1 - Rothe, Robert A1 - Yamazaki, T. A1 - Zakaria, O. B. A1 - Castro, E. A1 - Balderas, M. A1 - González, N. A1 - Salazar, C. A1 - Regalado, L. A1 - Valle, E. A1 - Rodríguez, L. A1 - Laguna, L.Á.. A1 - Ramírez, P. A1 - Avila, M. A1 - Ibarra, J. A1 - Valle, L. A1 - Arce, M. A1 - Mitani, Y. A1 - Konopelko, L. A1 - Krylov, A. A1 - Lopushanskaya, E. A1 - Lin, T.T. A1 - Liu, Q. A1 - Kooi, L.T. A1 - Fernandes-Whaley, M. A1 - Prevoo-Franzsen, D. A1 - Nhlapo, N. A1 - Visser, R. A1 - Kim, B. A1 - Lee, H. A1 - Kankaew, P. A1 - Pookrod, P. A1 - Sudsiri, N. A1 - Shearman, K. A1 - Gören, A.C. A1 - Bilsel, G. A1 - Yilmaz, H. A1 - Bilsel, M. A1 - Cergel, M. A1 - Coskun, F.G. A1 - Uysal, E. A1 - Gündüz, S. A1 - Ün, I. A1 - Warren, J. A1 - Bearden, D.W. A1 - Bedner, M. A1 - Duewer, D.L. A1 - Lang, B.E. A1 - Lippa, K.A. A1 - Schantz, M.M. A1 - Sieber, J.R. T1 - Final report on key comparison CCQM-K55.c (L-(+)-Valine): Characterization of organic substances for chemical purity N2 - KEY COMPARISON Under the auspices of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a key comparison, CCQM K55.c, was coordinated by the Bureau International des Poids et Mesures (BIPM) in 2012. Twenty National Measurement Institutes or Designated Institutes and the BIPM participated. Participants were required to assign the mass fraction of valine present as the main component in the comparison sample for CCQM-K55.c. The comparison samples were prepared from analytical grade L-valine purchased from a commercial supplier and used as provided without further treatment or purification. Valine was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of organic compounds of low structural complexity [molecular weight range 100–300] and high polarity (pKOW > –2). The KCRV for the valine content of the material was 992.0 mg/g with a combined standard uncertainty of 0.3 mg/g. The key comparison reference value (KCRV) was assigned by combination of KCRVs assigned from participant results for each orthogonal impurity class. The relative expanded uncertainties reported by laboratories having results consistent with the KCRV ranged from 1 mg/g to 6 mg/g when using mass balance based approaches alone, 2 mg/g to 7 mg/g using quantitative 1H NMR (qNMR) based approaches and from 1 mg/g to 2.5 mg/g when a result obtained by a mass balance method was combined with a separate qNMR result. The material provided several analytical challenges. In addition to the need to identify and quantify various related amino acid impurities including leucine, isoleucine, alanine and a-amino butyrate, care was required to select appropriate conditions for performing Karl Fischer titration assay for water content to avoid bias due to in situ formation of water by self-condensation under the assay conditions. It also proved to be a challenging compound for purity assignment by qNMR techniques. There was overall excellent agreement between participants in the identification and the quantification of the total and individual related structure impurities, water content, residual solvent and total non-volatile content of the sample. Appropriate technical justifications were developed to rationalise observed discrepancies in the limited cases where methodology differences led to inconsistent results. The comparison demonstrated that to perform a qNMR purity assignment the selection of appropriate parameters and an understanding of their potential influence on the assigned value is critical for reliable implementation of the method, particularly when one or more of the peaks to be quantified consist of complex multiplet signals. PY - 2014 DO - https://doi.org/10.1088/0026-1394/51/1A/08010 SN - 0026-1394 SN - 1681-7575 VL - 51 SP - 08010, 1 EP - 44 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-31072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westwood, S. A1 - Josephs, R. D. A1 - Choteau, T. A1 - Martos, G. A1 - Wielgosz, R. A1 - Sarzuri, Y. A. A1 - Mendoza, E. A1 - do Rego, E. C. P. A1 - Violante, F. G. M. A1 - da Silva Souza, W. A1 - de Carvalho, L. J. A1 - Fernandes, J. L. N. A1 - Bates, J. A1 - Rajotte, I. A1 - Melanson, J. E. A1 - Li, H. A1 - Guo, Z. A1 - Su, F. A1 - Wang, S. A1 - Huang, T. A1 - Lalerle, B. A1 - Gantois, F. A1 - Piechotta, Christian A1 - Philipp, Rosemarie A1 - Kaminski, Katja A1 - Klyk-Seitz, Urzsula-Anna A1 - Giannikopoulou, P. A1 - Skotidaki, E. A1 - Kakoulides, E. A1 - Pui-Kwan, C. A1 - Kuroe, M. A1 - Itoh, N. A1 - Calderón, M. A. A. A1 - Contreras, L. R. A1 - Osuna, M. A. A1 - Alrashed, M. A1 - Ting, L. A1 - Mei, G. E. A1 - Juan, W. A1 - Sze, C. P. A1 - Lin, T. T. A1 - Quinn, L. A1 - Swiegelaar, C. A1 - Fernandes-Whaley, M. A1 - Ahn, S. A1 - Chaiphet, T. A1 - Sudsiri, N. A1 - Bellazreg, W. A1 - Bilsel, M. A1 - Colombo, G. T1 - Key comparison CCQM-K78.b - non-polar analytes in organic solvent: methoxychlor and trifluralin in acetonitrile N2 - The CCQM-K78.b key comparison was coordinated by the Bureau International des Poids et Mesures (BIPM) on behalf of the CCQM Organic Analysis Working Group (OAWG) of the 'Comité Consultatif pour la Quantité de Matière' (CCQM), for National Measurement Institutes (NMIs) and Designated Institutes (DIs) providing measurement services in organic analysis under the 'Comité International des Poids et Mesures' (CIPM) Mutual Recognition Arrangement (MRA). This key comparison was conducted as a 'Track A' comparison within the OAWG's 10-year strategic plan. The goal of CCQM-K78.b was to underpin capabilities for the value assignment of calibration solutions containing low polarity/non-polar organic analytes in organic solvents. The selected model system consisted of a two-component pesticide solution in acetonitrile, comprising methoxychlor and trifluralin. Participants were tasked with assigning the mass fractions, in units of μg/g, of methoxychlor and trifluralin in acetonitrile solution. The mass fraction levels and analytical challenges of the selected analytes were representative of those encountered for calibration solutions of non-polar organic analytes. Participation in CCQM-K78.b allowed for the benchmarking of capabilities for assigning the mass fraction of non-polar organic compounds (pKow < -2) in solution, at mass fractions above 5 μg/g, in an organic solvent. Additionally, the comparison assessed the capabilities for the quantitative assignment of thermally labile compounds. Participants were provided by the BIPM with ampoules containing methoxychlor and trifluralin in acetonitrile. Each participant reported the mass fraction content of each analyte in μg/g. All participants ensured the metrological traceability of their results through the use of a Primary Reference Material (PRM), which was used to prepare a primary calibrator solution for each analyte using a gravimetric procedure. The twenty participating institutes primarily used analysis procedures based on GC-MS, -IDMS, -MS/MS, -ECD, and -FID, with some participants also using LC-UV for the value assignment. The analysis of methoxychlor and trifluralin in acetonitrile solution presented several challenges, including the thermal stability of the analytes under selected analytical techniques, control of solvent volatility, and considerable variation in some results using MS-based quantification methods. The mass fraction assignments for methoxychlor and trifluralin, consistent with the key comparison reference values (KCRVs), were achieved with associated relative standard uncertainties of (0.38 - 2.9) % for methoxychlor and (0.35 - 2.5) % for trifluralin. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database https://www.bipm.org/kcdb/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA). KW - Methoxychlor KW - Trifluralin KW - CCQM KW - Key comparison PY - 2025 DO - https://doi.org/10.1088/0026-1394/62/1A/08010 SN - 0026-1394 VL - 62 IS - 1A SP - 1 EP - 37 PB - IOP Publishing AN - OPUS4-64691 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -