TY - JOUR A1 - Golusda, L. A1 - Kühl, A. A. A1 - Lehmann, M. A1 - Dahlke, K. A1 - Mueller, S. A1 - Boehm-Sturm, P. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Schnorr, J. A1 - Freise, C. A1 - Taupitz, M. A1 - Biskup, K. A1 - Blanchard, V. A1 - Klein, O. A1 - Sack, I. A1 - Siegmund, B. A1 - Paclik, D. T1 - Visualization of inflammation in experimental colitis by magnetic resonance imaging using very small superparamagnetic iron oxide particles N2 - Inflammatory bowel diseases (IBD) comprise mainly ulcerative colitis (UC) and Crohn´s disease (CD). Both forms present with a chronic inflammation of the (gastro) intestinal tract, which induces excessive changes in the composition of the associated extracellular matrix (ECM). In UC, the inflammation is limited to the colon, whereas it can occur throughout the entire gastrointestinal tract in CD. Tools for early diagnosis of IBD are still very limited and highly invasive and measures for standardized evaluation of structural changes are scarce. To investigate an efficient non-invasive way of diagnosing intestinal inflammation and early changes of the ECM, very small superparamagnetic iron oxide nanoparticles (VSOPs) in magnetic resonance imaging (MRI) were applied in two mouse models of experimental colitis: the dextran sulfate sodium (DSS)-induced colitis and the transfer model of colitis. For further validation of ECM changes and inflammation, tissue sections were analyzed by immunohistochemistry. For in depth ex-vivo investigation of VSOPs localization within the tissue, Europium-doped VSOPs served to visualize the contrast agent by imaging mass cytometry (IMC). VSOPs accumulation in the inflamed colon wall of DSS-induced colitis mice was visualized in T2* weighted MRI scans. Components of the ECM, especially the hyaluronic acid content, were found to influence VSOPs binding. Using IMC, colocalization of VSOPs with macrophages and endothelial cells in colon tissue was shown. In contrast to the DSS model, colonic inflammation could not be visualized with VSOP-enhanced MRI in transfer colitis. VSOPs present a potential contrast agent for contrast-enhanced MRI to detect intestinal inflammation in mice at an early stage and in a less invasive manner depending on hyaluronic acid content. KW - Inflammation KW - Imaging KW - Immunohistochemistry KW - MRI KW - Nanoparticle KW - Extracellular matrix KW - Laser ablation KW - ICP-MS PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-555395 SN - 1664-042X VL - 13 IS - July 2022 SP - 1 EP - 15 PB - Frontiers Research Foundation CY - Lausanne AN - OPUS4-55539 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Van Den Bossche, T. A1 - Kunath, B. A1 - Schallert, K. A1 - Schäpe, S. A1 - Abraham, P. E. A1 - Armengaud, J. A1 - Arntzen, M. Ø. A1 - Bassignani, A. A1 - Benndorf, D. A1 - Fuchs, S. A1 - Giannone, R. J. A1 - Griffin, T. J. A1 - Hagen, L. H. A1 - Halder, R. A1 - Henry, C. A1 - Hettich, R. L. A1 - Heyer, R. A1 - Jagtap, P. A1 - Jehmlich, N. A1 - Jensen, M. A1 - Juste, C. A1 - Kleiner, M. A1 - Langella, O. A1 - Lehmann, T. A1 - Leith, E. A1 - May, P. A1 - Mesuere, B. A1 - Miotello, G. A1 - Peters, S. L. A1 - Pible, O. A1 - Queiros, P. T. A1 - Reichl, U. A1 - Renard, B. Y. A1 - Schiebenhoefer, H. A1 - Sczyrba, A. A1 - Tanca, A. A1 - Trappe, K. A1 - Trezzi, J.-P. A1 - Uzzau, S. A1 - Verschaffelt, P. A1 - von Bergen, M. A1 - Wilmes, P. A1 - Wolf, M. A1 - Martens, L. A1 - Muth, Thilo T1 - Critical Assessment of MetaProteome Investigation (CAMPI): A multi-laboratory comparison of established workflows N2 - Metaproteomics has matured into a powerful tool to assess functional interactions in microbial communities. While many metaproteomic workflows are available, the impact of method choice on results remains unclear. Here, we carry out a community-driven, multi-laboratory comparison in metaproteomics: the critical assessment of metaproteome investigation study (CAMPI). Based on well-established workflows, we evaluate the effect of sample preparation, mass spectrometry, and bioinformatic analysis using two samples: a simplified, laboratory-assembled human intestinal model and a human fecal sample. We observe that variability at the peptide level is predominantly due to sample processing workflows, with a smaller contribution of bioinformatic pipelines. These peptide-level differences largely disappear at the protein group level. While differences are observed for predicted community composition, similar functional profiles are obtained across workflows. CAMPI demonstrates the robustness of present-day metaproteomics research, serves as a template for multi-laboratory studies in metaproteomics, and provides publicly available data sets for benchmarking future developments. KW - Metaproteomics KW - Mass spectrometry KW - Data science KW - Benchmarking KW - Bioinformatics PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-541220 SN - 2041-1723 VL - 12 SP - 1 EP - 15 PB - Nature Publishing Group CY - London AN - OPUS4-54122 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, C. A1 - Schierack, P. A1 - Gerber, U. A1 - Schröder, C. A1 - Choi, Youngeun A1 - Bald, Ilko A1 - Lehmann, W. A1 - Rödiger, S. T1 - Streptavidin Homologues for Applications on Solid Surfaces at High Temperatures N2 - One of the most commonly used bonds between two biomolecules is the bond between biotin and streptavidin (SA) or streptavidin homologues (SAHs). A high dissociation constant and the consequent high-temperature stability even allows for its use in nucleic acid detection under polymerase chain reaction (PCR) conditions. There are a number of SAHs available, and for assay design, it is of great interest to determine as to which SAH will perform the best under assay conditions. Although there are numerous single studies on the characterization of SAHs in solution or selected solid phases, there is no systematic study comparing different SAHs for biomolecule-binding, hybridization, and PCR assays on solid phases. We compared streptavidin, core streptavidin, traptavidin, core traptavidin, neutravidin, and monomeric streptavidin on the surface of microbeads (10–15 μm in diameter) and designed multiplex microbead-based experiments and analyzed simultaneously the binding of biotinylated oligonucleotides and the hybridization of oligonucleotides to complementary capture probes. We also bound comparably large DNA origamis to capture probes on the microbead surface. We used a real-time fluorescence microscopy imaging platform, with which it is possible to subject samples to a programmable time and temperature profile and to record binding processes on the microbead surface depending on the time and temperature. With the exception of core traptavidin and monomeric streptavidin, all other SA/SAHs were suitable for our investigations. We found hybridization efficiencies close to 100% for streptavidin, core streptavidin, traptavidin, and neutravidin. These could all be considered equally suitable for hybridization, PCR applications, and melting point analysis. The SA/SAH–biotin bond was temperature-sensitive when the oligonucleotide was mono-biotinylated, with traptavidin being the most stable followed by streptavidin and neutravidin. Mono-biotinylated oligonucleotides can be used in experiments with temperatures up to 70 °C. When oligonucleotides were bis-biotinylated, all SA/SAH–biotin bonds had similar temperature stability under PCR conditions, even if they comprised a streptavidin variant with slower biotin dissociation and increased mechanostability. KW - Biopolymers Probes KW - Hybridization KW - Fluorescence KW - Genetics PY - 2020 U6 - https://doi.org/10.1021/acs.langmuir.9b02339 VL - 36 IS - 2 SP - 628 EP - 636 PB - American Chemical Society Publication CY - Washington AN - OPUS4-50357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tian, H. A1 - Voigt, Marieke A1 - Lehmann, C. A1 - Meng, Birgit A1 - Stephan, D. ED - Middendorf, B. ED - Fehling, E. T1 - Composition and microstructure stability of cement compound under cyclic hydrothermal condition N2 - There have been many researches focused on the performance improvement of ultra-high performance concrete (UHPC) by autoclaving treatment. The goal of autoclaving is to increase the pozzolanic reaction, and to densify the cement stone and the transition zone which originates from the incorporation of supplementary cementitious materials (SCMs), such as silica fume, fly ash and blast furnace slag. Due to the superior properties, UHPC can also be utilized under high mechanical load and aggressive condition, for example, the fabrication of water tanks for thermal storage which is of great significance for saving energy and reducing CO2 emission. It is known that mineral stability of the hydration products of an inorganic binder is highly related to the temperature and pressure of the environment. A certain stable composition at room temperature, however, may undergo a phase transformation at high temperature and the performance decrease under this severe condition will generally be more severe. In this way, the rationale behind this deterioration under long-term hydrothermal condition involving many cycles and long duration has to be clarified, and then appropriate optimizing methods will be performed in order to obtain a kind of construction with high durability under aggressive environment. For this purpose, different types and amounts of SCMs are introduced into the standard mixture of UHPC and the phase compositions after autoclaving at 200 °C and 15.5 bar are determined by combined X-ray diffraction and scanning electron microscope. Mercury intrusion porosimeter is used to characterise the microstructure of the samples. In order to establish the relationship between microstructure and macroscopic properties, compressive and flexural strength are also investigated. T2 - HiPerMat 2020 CY - Kassel, Germany DA - 11.03.2020 KW - Hydrothermal treatment KW - UHPC KW - Composition PY - 2020 SN - 978-3-7376-0828-2 VL - 23 SP - 87 EP - 88 PB - Kassel University Press CY - Kassel AN - OPUS4-52375 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Souza Machado, A. A. A1 - Lau, C. W. A1 - Till, J. A1 - Kloas, W. A1 - Lehmann, A. A1 - Becker, Roland A1 - Rillig, M. C. T1 - Impacts of microplastics on the soil biophysical environment N2 - Soils are essential components of terrestrial ecosystems that experience strong pollution pressure. Microplastic contamination of soils is being increasingly documented, with potential consequences for soil biodiversity and function. Notwithstanding, data on effects of such contaminants on fundamental properties potentially impacting soil biota are lacking. The present study explores the potential of microplastics to disturb vital relationships between soil and water, as well as its consequences for soil structure and microbial function. During a 5-weeks garden experiment we exposed a loamy sand soil to environmentally relevant nominal concentrations (up to 2%) of four common microplastic types (polyacrylic fibers, polyamide beads, polyester fibers, and polyethylene fragments). Then, we measured bulk density, water holding capacity, hydraulic conductivity, soil aggregation, and microbial activity. Microplastics affected the bulk density, water holding capacity, and the functional relationship between the microbial activity and water stable aggregates. The effects are underestimated if idiosyncrasies of particle type and concentrations are neglected, suggesting that purely qualitative environmental microplastic data might be of limited value for the assessment of effects in soil. If extended to other soils and plastic types, the processes unravelled here suggest that microplastics are relevant long-term anthropogenic stressors and drivers of global change in terrestrial ecosystems. KW - Mikroplastik KW - Einfluß KW - Boden PY - 2018 U6 - https://doi.org/10.1021/acs.est.8b02212 SN - 0013-936X SN - 1520-5851 VL - 52 IS - 17 SP - 9656 EP - 9665 PB - American Chemical Society AN - OPUS4-46547 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Werder, Julia A1 - Simon, Sebastian A1 - Lehmann, C. A1 - Selleng, C. A1 - Fontana, P. A1 - Meng, Birgit T1 - Autoclaving of ultra-high performance concrete (UHPC) N2 - By the combination of an optimized granulometry, a reduced water cement ratio and the use of superplasticizers ultra-high performance concrete achieves a compressive strength of over 150 N/mm2 and a high resistance regarding acids and water-soluble salts. In different Research projects the effect of an autoclavation on the mechanical strength and the phase composition was analyzed. In systematic studies, the concrete mix and the process parameters were varied. The results show that autoclavation leads to an improved pozzolanic and hydraulic reaction and significantly improves the mechanical strength compared to a conventional thermal treatment. If a minimum time-span for hydration is ensured, the achievable strength level is not dependent on the prestorage time. However, the duration of the autoclaving is significant. After the Maximum strength is reached there is only a very slight decrease, even if unrealistically long autoclaving times are applied. T2 - ICAAC 6th International Conference on Autoclaved Aerated Concrete CY - Potsdam, Germany DA - 04.09.2018 KW - Heat treatment KW - Hydroxylellestadite KW - Tobermorite KW - Ultra-high performance concrete KW - Zonation PY - 2018 SN - 978-3-433-03276-3 U6 - https://doi.org/10.1002/cepa.866 SP - 131 EP - 136 PB - Wilhelm Ernst & Sohn - Verlag für Architektur und technische Wissenschaften GmbH & Co. KG CY - Berlin, Germanry AN - OPUS4-46357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sieg, H. A1 - Lehmann, C. A1 - Kästner, Claudia A1 - Krause, B. A1 - Burel, A. A1 - Chevance, S. A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Tentschert, J. A1 - Bräuning, A. A1 - Laux, A. A1 - Thünemann, Andreas A1 - Loipis, I. E. A1 - Fessard, V. A1 - Luch, A. A1 - Lampen, A. T1 - Effects of Al-, Ti- and Zn-containing nanomaterials on cell lines in vitro N2 - Among the different tested endpoints, Al- and Ticontaining nanomaterials did notshowany toxicity in intestinal cell lines in vitro. Nevertheless, this absence of effect was not due to an absence of exposure, since particle-specific uptake was reported. Metal particle uptake over a long time period might therefore be relevant for risk assessment of aluminum- and titanium-containing food products. T2 - 52nd Congress of the European-Societies-of-Toxicology (EUROTOX) CY - Seville, Spain DA - 04.09.2017 KW - Nanoparticles PY - 2017 U6 - https://doi.org/10.1016/j.toxlet.2016.06.1954 SN - 0378-4274 VL - 258 SP - S272 PB - Elsevier Ltd. AN - OPUS4-40939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lehmann, C. A1 - Meng, Birgit A1 - Nemecek, J. T1 - Investigations on the process of autoclaving Ultra-High Performance Concrete (UHPC) T2 - 19. Internationale Baustofftagung (ibausil) CY - Weimar DA - 2015-09-16 PY - 2015 AN - OPUS4-34495 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lehmann, C. A1 - Meng, Birgit A1 - Nemecek, J. ED - Ludwig, H.-M. T1 - Investigations on the process of autoclaving ultra-high performance concrete (UHPC) N2 - Concrete technology results more and more in the development of materiale with enhanced properties, such as high strength, higher durability and increased ecological compatibility. One exceptional example is Ultra-High Performance Concrete (UHPC). Its advantages are very high compressive strength and an improved durability, caused by their dense micro structure. Curing under water vapor Saturation pressure (autoclaving) can improve these properties by affecting the micro structure and better the mechanical properties of UHPC. Autoclaving leads to an enhanced cement hydration and accelerated reaction rate of supplementary cementitious materials (SCM) and mineral additions, Used at the production of aerated autoclaved concrete (AAC) and sand-lime bricks, the process of autoclaving is well known, especially in highly porous Systems. One well known requirement to autoclave effectively is a porosity of at least 10%. There is no sufficient heat transfer and also not enough water available if the porosity is lower, Nevertheless, autoclaving also works in the dense structure of UHPC with porosities lower than 2%, as former investigations have shown. There is only a visible difference between the outer parts of the samples compared to their core. Investigations on the chemistry, the micro structure as well as the mechanical properties where performed to find an explanation to this effect and to explain the functionality of autoclaving UHPC in spite of the low porosity. T2 - 19. Ibausil - Internationale Baustofftagung CY - Weimar, Germany DA - 16.09.2015 PY - 2015 SN - 978-3-00-050225-5 VL - 2 SP - P2.15, 2-1039 EP - 2-1044 AN - OPUS4-34872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rödiger, S. A1 - Liebsch, C. A1 - Schmidt, C. A1 - Lehmann, W. A1 - Resch-Genger, Ute A1 - Schedler, U. A1 - Schierack, P. T1 - Nucleic acid detection based on the use of microbeads: a review N2 - Microbead-based technologies represent elegant and versatile approaches for highly parallelized quantitative multiparameter assays. They also form the basis of various techniques for detection and quantification of nucleic acids and proteins. Nucleic acid-based methods include hybridization assays, solid-phase PCR, sequencing, and trapping assays. Microbead assays have been improved in the past decades and are now important tools in routine and point-of-care diagnostics as well as in life science. Its advances include low costs, low workload, high speed and high-throughput automation. The potential of microbead-based assays therefore is apparent, and commercial applications can be found in the detection and discrimination of single nucleotide polymorphism, of pathogens, and in trapping assays. This review provides an overview on microbead-based platforms for biosensing with a main focus on nucleic acid detection (including amplification strategies and on selected probe systems using fluorescent labeling). Specific sections cover chemical properties of microbeads, the coupling of targets onto solid surfaces, microbead probe systems (mainly oligonucleotide probes), microbead detection schemes (with subsections on suspension arrays, microfluidic devices, and immobilized microbeads), quantification of nucleic acids, PCR in solution and the detection of amplicons, and methods for solid-phase amplification. We discuss selected trends such as microbead-coupled amplification, heterogeneous and homogenous DNA hybridization assays, real-time assays, melting curve analysis, and digital microbead assays. We finally discuss the relevance and trends of the methods in terms of high-level multiplexed analysis and their potential in diagnosis and personalized medicine. Contains 211 references. KW - Microbead KW - Microbead array KW - PCR KW - Microfluidic KW - Real-time KW - Multiplex PY - 2014 U6 - https://doi.org/10.1007/s00604-014-1243-4 SN - 0026-3672 SN - 1436-5073 VL - 181 IS - 11-12 SP - 1151 EP - 1168 PB - Springer CY - Wien AN - OPUS4-31183 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -