TY - JOUR A1 - Noble, J.E. A1 - Wang, L. A1 - Cerasoli, E. A1 - Knight, A.E. A1 - Porter, R.A. A1 - Gray, E. A1 - Howe, C. A1 - Hannes, E. A1 - Corbisier, P. A1 - Wang, J. A1 - Wu, L. A1 - Altieri, I. A1 - Patriarca, M. A1 - Hoffmann, Angelika A1 - Resch-Genger, Ute A1 - Ebert, B. A1 - Voigt, Jan A1 - Shigeri, Y. A1 - Vonsky, M.S. A1 - Konopelko, L.A. A1 - Gaigalas, A.K. A1 - Bailey, M. J. A. T1 - An international comparability study to determine the sources of uncertainty associated with a non-competitive sandwich fluorescent ELISA KW - ELISA KW - Fluorescence KW - Interferon KW - Uncertainty KW - Round Robin KW - Immunoassay KW - Quality assurance KW - Fluorescein PY - 2008 SN - 1434-6621 SN - 1437-8523 VL - 46 IS - 7 SP - 1033 EP - 1045 PB - De Gruyter CY - Berlin AN - OPUS4-18283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wolf, S. E. A1 - Müller, L. A1 - Barrea, R. A1 - Kampf, C.J. A1 - Leiterer, Jork A1 - Panne, Ulrich A1 - Hoffmann, T. A1 - Emmerling, Franziska A1 - Tremel, W. T1 - Carbonate-coordinated metal complexes precede the formation of liquid amorphous mineral emulsions of divalent metal carbonates N2 - During the mineralisation of metal carbonates MCO3 (M = Ca, Sr, Ba, Mn, Cd, Pb) liquid-like amorphous intermediates emerge. These intermediates that form via a liquid/liquid phase separation behave like a classical emulsion and are stabilized electrostatically. The occurrence of these intermediates is attributed to the formation of highly hydrated networks whose stability is mainly based on weak interactions and the variability of the metal-containing pre-critical clusters. Their existence and compositional freedom are evidenced by electrospray ionization mass spectrometry (ESI-MS). Liquid intermediates in non-classical crystallisation pathways seem to be more common than assumed. PY - 2011 DO - https://doi.org/10.1039/c0nr00761g SN - 2040-3364 SN - 2040-3372 IS - 3 SP - 1158 EP - 1165 PB - RSC Publ. CY - Cambridge AN - OPUS4-23355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kazlagić, Anera A1 - Rosner, M. A1 - Cipriani, A. A1 - Frick, D. A. A1 - Glodny, J. A1 - Hoffmann, E. J. A1 - Hora, J. M. A1 - Irrgeher, J. A1 - Lugli, F. A1 - Magna, T. A1 - Meisel, T. C. A1 - Meixner, A. A1 - Possolo, A. A1 - Pramann, A. A1 - Pribil, M. J. A1 - Prohaska, T. A1 - Retzmann, Anika A1 - Rienitz, O. A1 - Rutherford, D. A1 - Paula-Santos, G. M. A1 - Tatzel, M. A1 - Widhalm, S. A1 - Willbold, M. A1 - Zuliani, T. A1 - Vogl, Jochen T1 - Characterisation of conventional 87Sr/86Sr isotope ratios in cement, limestone and slate reference materials based on an interlaboratory comparison study N2 - An interlaboratory comparison (ILC)was organised to characterise 87Sr/86Sr isotope ratios in geological and industrial reference materials by applying the so-called conventional method for determining 87Sr/86Sr isotope ratios. Four cements (VDZ 100a,VDZ 200a, VDZ 300a, IAG OPC-1), one limestone (IAG CGL ML-3) and one slate (IAG OU-6) reference materials were selected, covering a wide range of naturally occurring Sr isotopic signatures. Thirteen laboratories received aliquots of these six reference materials together with a detailed technical protocol. The consensus values for the six reference materials and their associated measurement uncertainties were obtained by applying a Gaussian, linear mixed effects model fitted to all the measurement results. By combining the consensus values and their uncertainties with an uncertainty contribution for potential heterogeneity, reference values ranging from 0.708134 mol mol-1 to 0.729778 mol mol-1 were obtained with relative expanded uncertainties of ≤ 0.007 %. This study represents an ILC on conventional 87Sr/86Sr isotope ratios, within which metrological principles were considered and the compatibility of measurement results obtained by MC-ICP-MS and by MC-TIMS is demonstrated. The materials characterised in this study can be used as reference materials for validation and quality control purposes and to estimate measurement uncertainties in conventional 87Sr/86Sr isotope ratio measurement. KW - Sr isotope analysis KW - Isotope ratios KW - Cement KW - Geological material KW - MC-TIMS KW - MC-ICP-MS KW - Interlaboratory comparison KW - Measurement uncertainty KW - Cconventional method PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579836 DO - https://doi.org/10.1111/ggr.12517 SN - 1639-4488 VL - 47 IS - 4 SP - 821 EP - 840 PB - Wiley online library AN - OPUS4-57983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abou-Ras, D. A1 - Caballero, R. A1 - Fischer, C.-H. A1 - Kaufmann, C.A. A1 - Lauermann, I. A1 - Mainz, R. A1 - Mönig, H. A1 - Schöpke, A. A1 - Stephan, C. A1 - Streeck, C. A1 - Schorr, S. A1 - Eicke, A. A1 - Döbeli, M. A1 - Gade, B. A1 - Hinrichs, J. A1 - Nunney, T. A1 - Dijkstra, H. A1 - Hoffmann, V. A1 - Klemm, D. A1 - Efimova, V. A1 - Bergmaier, A. A1 - Dollinger, G. A1 - Wirth, Thomas A1 - Unger, Wolfgang A1 - Rockett, A.A. A1 - Perez-Rodriguez, A. A1 - Alvarez-Garcia, J. A1 - Izquierdo-Roca, V. A1 - Schmid, T. A1 - Choi, P.-P. A1 - Müller, M. A1 - Bertram, F. A1 - Christen, J. A1 - Khatri, H. A1 - Collins, R.W. A1 - Marsillac, S. A1 - Kötschau, I. T1 - Comprehensive comparison of various techniques for the analysis of elemental distributions in thin films N2 - The present work shows results on elemental distribution analyses in Cu(In,Ga)Se2 thin films for solar cells performed by use of wavelength-dispersive and energy-dispersive X-ray spectrometry (EDX) in a scanning electron microscope, EDX in a transmission electron microscope, X-ray photoelectron, angle-dependent soft X-ray emission, secondary ion-mass (SIMS), time-of-flight SIMS, sputtered neutral mass, glow-discharge optical emission and glow-discharge mass, Auger electron, and Rutherford backscattering spectrometry, by use of scanning Auger electron microscopy, Raman depth profiling, and Raman mapping, as well as by use of elastic recoil detection analysis, grazing-incidence X-ray and electron backscatter diffraction, and grazing-incidence X-ray fluorescence analysis. The Cu(In,Ga)Se2 thin films used for the present comparison were produced during the same identical deposition run and exhibit thicknesses of about 2 µm. The analysis techniques were compared with respect to their spatial and depth resolutions, measuring speeds, availabilities, and detection limits. KW - Elemental distributions KW - Comparison KW - Depth profiling KW - Chemical mapping KW - Thin films KW - Solar cells KW - Chalcopyrite-type KW - Cu(In,Ga)Se2 PY - 2011 DO - https://doi.org/10.1017/S1431927611000523 SN - 1431-9276 SN - 1435-8115 VL - 17 IS - 5 SP - 728 EP - 751 PB - Cambridge University Press CY - New York, NY AN - OPUS4-24506 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, H A1 - Paulisch, M C A1 - Gebhard, M A1 - Osiewacz, J A1 - Kutter, M A1 - Hilger, A A1 - Arlt, T A1 - Kardjilov, N A1 - Ellendorff, B A1 - Beckmann, F A1 - Markötter, Henning A1 - Luik, M A1 - Turek, T A1 - Manke, I A1 - Roth, C T1 - Development of a Modular Operando Cell for X-ray Imaging of Strongly Absorbing Silver-Based Gas Diffusion Electrodes N2 - Metal-based gas diffusion electrodes are utilized in chlor-alkali electrolysis or electrochemical reduction of carbon dioxide, allowing the reaction to proceed at high current densities. In contrast to planar electrodes and predominantly 2D designs, the industrially required high current densities can be achieved by intense contact between the gas and liquid phase with the catalytically active surfaces. An essential asset for the knowledge-based design of tailored electrodes is therefore in-depth information on electrolyte distribution and intrusion into the electrode’s porous structure. Lab-based and synchrotron radiography allow for monitoring this process operando. Herein, we describe the development of a cell design that can be modularly adapted and successfully used to monitor both the oxygen reduction reaction and the electrochemical reduction of CO2 as exemplary and currently very relevant examples of gas-liquid reactions by only minor modifications to the cell set-up. With the reported cell design, we were able to observe the electrolyte distribution within the gas diffusion electrode during cell operation in realistic conditions. KW - X-Ray imaging KW - Gas diffusion electrodes KW - Operando cell PY - 2022 DO - https://doi.org/10.1149/1945-7111/ac6220 VL - 169 IS - 4 SP - 044508 PB - IOP science AN - OPUS4-55027 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ferreira da Silva, F. A1 - do N. Varella, M. T. A1 - Jones, N. C. A1 - Vrönning Hoffmann, S. A1 - Denifl, S. A1 - Bald, Ilko A1 - Kopyra, J. T1 - Electron-Induced Reactions in 3-Bromopyruvic Acid N2 - 3-Bromopyruvic acid (3BP) is a potential anticancer drug, the action of which on cellular metabolism is not yet entirely clear. The presence of a bromine atom suggests that it is also reactive towards low-energy electrons, which are produced in large quantities during tumour Radiation therapy. Detailed knowledge of the interaction of 3BP with secondary electrons is a prerequisite to gain a complete picture of the effects of 3BP in different forms of Cancer therapy. Herein, dissociative electron attachment (DEA) to 3BP in the gas phase has been studied both experimentally by using a crossed-beam setup and theoretically through scattering and quantum chemical calculations. These results are complemented by a vacuum ultraviolet absorption spectrum. The main fragmentation channel is the formation of Br@ close to 0 eV and within several resonant features at 1.9 and 3–8 eV. At low electron energies, Br@ formation proceeds through s* and p* shape resonances, and at higher energies through core-excited resonances. It is found that the electron-capture cross-section is clearly increased compared with that of non-brominated pyruvic acid, but, at the same time, fragmentation reactions through DEA are significantly altered as well. The 3BP transient negative ion is subject to a lower number of fragmentation reactions than those of pyruvic acid, which indicates that 3BP could indeed act by modifying the electron-transport chains within oxidative phosphorylation. It could also act as a radio-sensitiser. KW - Density functional calculations KW - Dissociative electron attachment KW - Drug discovery KW - Gas-phase reactions KW - Sensitizers PY - 2019 DO - https://doi.org/10.1002/chem.201806132 SN - 0947-6539 VL - 25 IS - 21 SP - 5498 EP - 5506 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-48003 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruna, F. G. A1 - Prokop, M. A1 - Bystron, T. A1 - Loukrakpam, R. A1 - Melke, J. A1 - Lobo, C. M. S. A1 - Fink, M. A1 - Zhu, M. A1 - Voloshina, E. A1 - Kutter, M. A1 - Hoffmann, H. A1 - Yusenko, Kirill A1 - de Oliveira Guilherme Buzanich, Ana A1 - Röder, B. A1 - Bouzek, K. A1 - Paulus, B. A1 - Roth, C. T1 - Following adsorbed intermediates on a platinum gas diffusion electrode in H3PO3‑containing electrolytes using in situ X‑ray absorption spectroscopy N2 - One of the challenges of high-temperature polymer electrolyte membrane fuel cells is the poisoning of the Pt catalyst with H3PO4. H3PO4 is imbibed into the routinely used polybenzimidazole-based membranes, which facilitate proton conductivity in the temperature range of 120−200 °C. However, when leached out of the membrane by water produced during operation, H3PO4 adsorbs on the Pt catalyst surface, blocking the active sites and hindering the oxygen reduction reaction (ORR). The reduction of H3PO4 to H3PO3, which occurs at the anode due to a combination of a low potential and the presence of gaseous H2, has been investigated as an additional important contributing factor to the observed poisoning effect. H3PO3 has an affinity toward adsorption on Pt surfaces even greater than that of H2PO4 −. In this work, we investigated the poisoning effect of both H3PO3 and H3PO4 using a half-cell setup with a gas diffusion electrode under ambient conditions. By means of in situ X-ray absorption spectroscopy, it was possible to follow the signature of different species adsorbed on the Pt nanoparticle catalyst (H, O, H2PO4 −, and H3PO3) at different potentials under ORR conditions in various electrolytes (HClO4, H3PO4, and H3PO3). It was found that H3PO3 adsorbs in a pyramidal configuration P(OH)3 through a Pt−P bond. The competition between H3PO4 and H3PO3 adsorption was studied, which should allow for a better understanding of the catalyst poisoning mechanism and thus assist in the development of strategies to mitigate this phenomenon in the future by minimizing H3PO3 generation by, for example, improved catalyst design or adapted operation conditions or changes in the electrolyte composition. KW - H3PO4 life cycle KW - XAS KW - In situ coupling KW - High-temperature fuel cells KW - Δμ XANES KW - H3PO3 PY - 2022 DO - https://doi.org/10.1021/acscatal.2c02630 SN - 2155-5435 VL - 12 IS - 18 SP - 11472 EP - 11484 PB - ACS CY - Washington, DC AN - OPUS4-55815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dippong, Martin A1 - Carl, Peter A1 - Lenz, C. A1 - Schenk, J. A. A1 - Hoffmann, Katrin A1 - Schwaar, Timm A1 - Schneider, Rudolf A1 - Kuhne, Maren T1 - Hapten-specific single-cell selection of hybridoma clones by fluorescence-activated cell sorting for the generation of monoclonal antibodies N2 - The conventional hybridoma screening and subcloning process is generally considered to be one of the most critical steps in hapten-specific antibody production. It is time-consuming, monoclonality is not guaranteed, and the number of clones that can be screened is limited. Our approach employs a novel hapten-specific labeling technique of hybridoma cells. This allows for fluorescence-activated cell sorting (FACS) and single-cell deposition and thereby eliminates the above-mentioned problems. A two-step staining approach is used to detect antigen specificity and antibody expression: in order to detect antigen specificity, hybridoma cells are incubated with a hapten−horseradish peroxidase conjugate (hapten−HRP), which is subsequently incubated with a fluorophore-labeled polyclonal anti-peroxidase antibody (anti-HRP−Alexa Fluor 488). To characterize the expression of membrane-bound immunoglobulin G (IgG), a fluorophore-labeled anti-mouse IgG antibody (anti-IgG−Alexa Fluor 647) is used. Hundreds of labeled hybridoma cells producing monoclonal antibodies (mAbs) specific for a hapten were rapidly isolated and deposited from a fusion mixture as single-cell clones via FACS. Enzyme-linked immunosorbent assay (ELISA) measurements of the supernatants of the sorted hybridoma clones revealed that all hapten-specific hybridoma clones secrete antibodies against the target. There are significant improvements using this high-throughput technique for the generation of mAbs including increased yield of antibody-producing hybridoma clones, ensured monoclonality of sorted cells, and reduced development times. KW - Monoclonal antibodies KW - FACS KW - Hybridoma cells PY - 2017 DO - https://doi.org/10.1021/acs.analchem.6b04569 SN - 0003-2700 SN - 1520-6882 VL - 89 IS - 7 SP - 4007 EP - 4012 PB - ACS Publications AN - OPUS4-40320 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gonzales-Gago, C. A1 - Smid, P. A1 - Hofmann, T. A1 - Venzago, C. A1 - Hoffmann, V. A1 - Gruner, W. A1 - Pfeifer, Jens A1 - Richter, Silke A1 - Kipphardt, Heinrich T1 - Investigations of matrix independent calibration approaches in fast flow glow discharge mass spectrometry N2 - The performance of glow discharge mass spectrometry (GD-MS) is investigated for the accurate quantification of metallic impurities and oxygen in solid samples using the fast flow source GD-MS instrument ELEMENT GD. Different quantification approaches based on relative and absolute sensitivity factors are evaluated for the determination of metallic impurities using three sample matrixes (Al, Cu and Zn). The effect of the discharge conditions (voltage, current, discharge gas pressure/flow) on the sensitivity is investigated and the parameters are optimized to favour matrix independent calibrations. Improved standard relative sensitivity factors (StdRSFs) are calculated under optimal conditions based on multi-matrix calibrations. The sputtering rate corrected calibration is also presented as a multi-matrix calibration approach. The capabilities of GD-MS for oxygen determination are also investigated using a set of new conductive samples containing oxygen with mass fractions in the percent range in three different matrices (Al, Mg and Cu) produced by a sintering process. Poor limits of detection (in the order of g/kg) were obtained as consequence of the reduced sensitivity of oxygen in GD-MS and high oxygen background signal intensity as well as its variations. The absolute sensitivity procedure is shown as a matrix-independent approach, which provides quantitative values consistent with those obtained by carrier gas hot extraction (CGHE). KW - Fast flow GD KW - GDMS KW - Calibration KW - Matrix independent calibration PY - 2019 DO - https://doi.org/10.1039/c9ja00023b SN - 1364-5544 SN - 0267-9477 VL - 34 IS - 6 SP - 1109 EP - 1125 PB - Royal Society of Chemistry CY - London AN - OPUS4-47842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lisec, Jan A1 - Hoffmann, F. A1 - Jaeger, C. A1 - Bhattacharya, A. A1 - Schmitt, C. A. T1 - Nontargeted Identification of Tracer Incorporation in High- Resolution Mass Spectrometry N2 - “Fluxomics” refers to the systematic analysis of metabolic fluxes in a biological system and may uncover novel dynamic properties of metabolism that remain undetected in conventional metabolomic approaches. In labeling experiments, tracer molecules are used to track changes in the isotopologue distribution of metabolites, which allows one to estimate fluxes in the metabolic network. Because unidentified compounds cannot be mapped on pathways, they are often neglected in labeling experiments. However, using recent developments in de novo annotation may allow to harvest the information present in these compounds if they can be identified. Here, we present a novel tool (HiResTEC) to detect tracer incorporation in high-resolution mass spectrometry data sets. The software automatically extracts a comprehensive, nonredundant list of all compounds showing more than 1% tracer incorporation in a nontargeted fashion. We explain and show in an example data set how mass precision and other filter heuristics, calculated on the raw data, can efficiently be used to reduce redundancy and noninformative signals by 95%. Ultimately, this allows to quickly investigate any labeling experiment for a complete set of labeled compounds (here 149) with acceptable false positive rates. We further re-evaluate a published data set from liquid chromatography-electrospray ionization (LC-ESI) to demonstrate broad applicability of our tool and emphasize importance of quality control (QC) tests. HiResTEC is provided as a package in the open source software framework R and is freely available on CRAN. KW - Fluxomics KW - R package KW - Mass-Spectrometry PY - 2018 DO - https://doi.org/10.1021/acs.analchem.8b00356 VL - 90 IS - 12 SP - 7253 EP - 7260 PB - ACS Publications AN - OPUS4-45493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -