TY - JOUR A1 - Chazeau, E. A1 - Fabre, C. A1 - Privat, M. A1 - Godard, A. A1 - Racoeur, C. A1 - Bodio, E. A1 - Busser, B. A1 - Wegner, Karl David A1 - Sancey, L. A1 - Paul, C. A1 - Goze, C. T1 - Comparison of the In Vitro and In Vivo Behavior of a Series of NIR-II-Emitting Aza-BODIPYs Containing Different Water-Solubilizing Groups and Their Trastuzumab Antibody Conjugates N2 - The development of new fluorescent organic probes effective in the NIR-II region is currently a fast-growing field and represents a challenge in the domain of medical imaging. In this study, we have designed and synthesized an innovative series of aza-boron dipyrromethenes emitting in the NIR-II region. We have investigated the effect of different water-solubilizing groups not only on the photophysical properties of the compounds but also on their in vitro and in vivo performance after bioconjugation to the antibody trastuzumab. Remarkably, we discovered that the most lipophilic compound unexpectedly displayed the most favorable in vivo properties after bioconjugation. This underlines the profound influence that the fluorophore functionalization approach can have on the efficiency of the resulting imaging agent. KW - NIR-II KW - In vivo imaging KW - Fluorescence KW - Spectroscopy KW - Antibody conjugates PY - 2024 DO - https://doi.org/10.1021/acs.jmedchem.3c02139 SN - 1520-4804 VL - 67 IS - 5 SP - 3679 EP - 3691 PB - ACS Publications CY - Washington, DC AN - OPUS4-59607 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Godard, A. A1 - Kalot, G. A1 - Privat, M. A1 - Bendellaa, M. A1 - Busser, B. A1 - Wegner, Karl David A1 - Denat, F. A1 - Le Guevel, X. A1 - Coll, J.-L. A1 - Paul, C. A1 - Bodio, E. A1 - Goze, C. A1 - Sancey, L. T1 - NIR-II Aza-BODIPY Dyes Bioconjugated to Monoclonal Antibody Trastuzumab for Selective Imaging of HER2-Positive Ovarian Cancer N2 - Using fluorescence-guided surgery (FGS) to cytoreductive surgery helps achieving complete resection of microscopic ovarian tumors. The use of visible and NIR-I fluorophores has led to beneficial results in clinical trials; however, involving NIR-II dyes seems to outperform those benefits due to the deeper tissue imaging and higher signal/noise ratio attained within the NIR-II optical window. In this context, we developed NIR-II emitting dyes targeting human epidermal growth factor receptor 2 (HER2)-positive ovarian tumors by coupling water-soluble NIR-II aza-BODIPY dyes to the FDA-approved anti-HER2 antibody, namely, trastuzumab. These bioconjugated NIR-II-emitting dyes displayed a prolonged stability in serum and a maintained affinity toward HER2 in vitro. We obtained selective targeting of HER2 positive tumors (SKOV-3) in vivo, with a favorable tumor accumulation. We demonstrated the fluorescence properties and the specific HER2 binding of the bioconjugated dyes in vivo and thus their potential for NIR-II FGS in the cancer setting. KW - NIR-II KW - Fluorescent dye KW - In vivo imaging KW - Ovarian cancer KW - Antibody conjuagtes KW - Bioimaging PY - 2023 DO - https://doi.org/10.1021/acs.jmedchem.3c00100 SN - 0022-2623 VL - 66 IS - 7 SP - 5185 EP - 5195 PB - ACS Publications AN - OPUS4-57293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chazeau, E. A1 - Pipier, A. A1 - Wegner, Karl David A1 - Ghiringhelli, F. A1 - Sancey, L. A1 - Paul, C. A1 - Goze, C. T1 - NIR-II aza-BODIPY Platform for the Development of a Fluorescent Antibody Drug Conjugate N2 - Real-time imaging of antibody-drug conjugates (ADCs) offers valuable insights for assessing tumor targeting specificity, monitoring therapeutic efficacy, and detecting off-target accumulation that may cause adverse effects. To enable precise tracking, we developed a versatile fluorescent platform based on an NIR-II emitting aza-BODIPY dye, which can be site-specifically grafted onto an IgG1 antibody to generate well-defined fluorescent ADCs. As a proof of concept, we synthesized an HER2-targeting trastuzumab immunoconjugate bearing a NIR-II aza-BODIPY fluorophore. The cytotoxic monomethyl auristatin E (MMAE) payload was introduced in the final step, resulting in a trackable and homogeneous ADC suitable for both in vitro and in vivo investigations. The resulting Trastu-azaNIRII-MMAE selectively accumulated in HER2-positive subcutaneous tumors, significantly reducing the tumor growth. Using NIR-II optical imaging, a single injection of the NIR-II-ADC allowed for the detection of the conjugate over a period of more than one month, highlighting its potential for long-term tracking and therapeutic applications. KW - NIR-II KW - Fluorescence KW - Quality assurance KW - Antibody drug conjugate KW - In vivo imaging PY - 2025 DO - https://doi.org/10.1021/acs.jmedchem.4c02777 VL - 68 IS - 7 SP - 7232 EP - 7242 PB - ACS Publications AN - OPUS4-63025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Godard, A. A1 - Kalot, G. A1 - Pliquett, J. A1 - Busser, B. A1 - Le Guével, X. A1 - Wegner, Karl David A1 - Resch-Genger, Ute A1 - Russelin, Y. A1 - Coll, J.-L. A1 - Denat, F. A1 - Bodio, E. A1 - Goze, C. A1 - Sancey, L. T1 - Water-Soluble Aza-BODIPYs: Biocompatible Organic Dyes for High Contrast In Vivo NIR-II Imaging N2 - A simple NIR-II emitting water-soluble system has been developed and applied in vitro and in vivo. In vitro, the fluorophore quickly accumulated in 2D and 3D cell cultures and rapidly reached the tumor in rodents, showing high NIR-II contrast for up to 1 week. This very efficient probe possesses all the qualities necessary for translation to the clinic as well as for the development of NIR-II emitting materials. KW - Aza-BODIPY KW - NIR-II Imaging KW - In vivo imaging KW - organic dyes KW - SWIR KW - Cancer KW - Fluorescence PY - 2020 DO - https://doi.org/10.1021/acs.bioconjchem.0c00175 VL - 31 IS - 4 SP - 1088 EP - 1092 PB - ACS Publications AN - OPUS4-50695 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -