TY - JOUR A1 - Brown, A. S. A1 - Milton, M. J. T. A1 - Cowper, C. J. A1 - Squire, G. D. A1 - Bremser, Wolfram A1 - Branch, R. W. T1 - Analysis of natural gas by gas chromatography Reduction of correlated uncertainties by normalisation JF - Journal of chromatography A N2 - The results of gas chromatographic analysis of natural gas mixtures reveal strong correlations (Pearson correlation coefficient of >0.96) between the uncertainty of each component and variations in the ambient pressure. Although correction for ambient pressure variations can reduce this variability, normalisation of the results of each analysis using the assumption that the sum of all component amount fractions is unity provides significantly greater reductions in the uncertainty of each measured component. We show that the uncertainty in normalised components can be estimated approximately using the correlation coefficient as a measure of the correlation present in the measurements, or exactly using a full calculation of the variance/covariance (V/C) structure of the data. KW - Uncertainty KW - Normalisation KW - Variance KW - Covariance KW - Natural gas KW - Gases KW - Alkanes PY - 2004 DO - https://doi.org/10.1016/j.chroma.2004.04.007 SN - 0021-9673 VL - 1040 IS - 2 SP - 215 EP - 225 PB - Elsevier CY - Amsterdam AN - OPUS4-3732 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nieuwenkamp, G. A1 - Wessel, R. M. A1 - van der Veen, A.M.H. A1 - Ziel, P. R. A1 - Han, Q. A1 - Tuma, Dirk A1 - Woo, J.-C. A1 - Fuko, J.T. A1 - Szilágyi, N. A1 - Büki, T. A1 - Konopelko, L. A1 - Kustikov, Y.A. A1 - Popova, T.A. A1 - Pankratov, V.V. A1 - Pir, M.N. A1 - Nazarov, E.V. A1 - Ehvalov, L.V. A1 - Timofeev, A.U. A1 - Kuzmina, T.A. A1 - Meshkov, A.V. A1 - Valková, M. A1 - Pätoprsty, V. A1 - Downey, M. A1 - Vargha, G. A1 - Brown, A. A1 - Milton, M. T1 - International comparison CCQM-K77: Refinery gas JF - Metrologia N2 - Refinery gas is a complex mixture of hydrocarbons and non-combustible gases (e.g., carbon monoxide, carbon dioxide, nitrogen, helium). It is obtained as part of the refining and conversion of crude oil. This key comparison aims to evaluate the measurement capabilities for these types of mixtures. The results of the key comparison indicate that the analysis of a refinery-type gas mixture is for some laboratories a challenge. Overall, four laboratories (VSL, NIM, NPL and VNIIM) have satisfactory results. The results of some participants highlight some non-trivial issues, such as appropriate separation between saturated and unsaturated hydrocarbons, and issues with the measurement of nitrogen, hydrogen and helium. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA). DatesIssue 1A (Technical Supplement 2012) KW - Ringversuch KW - Raffineriegas KW - Chromatographische Analyse PY - 2012 DO - https://doi.org/10.1088/0026-1394/49/1A/08003 SN - 0026-1394 SN - 1681-7575 VL - 49 IS - 08003 SP - 1 EP - 71 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-25931 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Favet, J. A1 - Lapanje, A. A1 - Giongo, A. A1 - Kennedy, S. A1 - Aung, Y.-Y. A1 - Cattaneo, A. A1 - Davis-Richardson, A.G. A1 - Brown, C.T. A1 - Kort, R. A1 - Brumsack, H.-J. A1 - Schnetger, B. A1 - Chappell, A. A1 - Kroijenga, J. A1 - Beck, A. A1 - Schwibbert, Karin A1 - Mohamed, A.H. A1 - Kirchner, T. A1 - Dorr de Quadros, P. A1 - Triplett, E.W. A1 - Broughton, William J. A1 - Gorbushina, Anna T1 - Microbial hitchhikers on intercontinental dust: catching a lift in Chad JF - The ISME journal : multisiciplinary journal of microbial ecology N2 - Ancient mariners knew that dust whipped up from deserts by strong winds travelled long distances, including over oceans. Satellite remote sensing revealed major dust sources across the Sahara. Indeed, the Bodélé Depression in the Republic of Chad has been called the dustiest place on earth. We analysed desert sand from various locations in Chad and dust that had blown to the Cape Verde Islands. High throughput sequencing techniques combined with classical microbiological methods showed that the samples contained a large variety of microbes well adapted to the harsh desert conditions. The most abundant bacterial groupings in four different phyla included: (a) Firmicutes—Bacillaceae, (b) Actinobacteria—Geodermatophilaceae, Nocardiodaceae and Solirubrobacteraceae, (c) Proteobacteria—Oxalobacteraceae, Rhizobiales and Sphingomonadaceae, and (d) Bacteroidetes—Cytophagaceae. Ascomycota was the overwhelmingly dominant fungal group followed by Basidiomycota and traces of Chytridiomycota, Microsporidia and Glomeromycota. Two freshwater algae (Trebouxiophyceae) were isolated. Most predominant taxa are widely distributed land inhabitants that are common in soil and on the surfaces of plants. Examples include Bradyrhizobium spp. that nodulate and fix nitrogen in Acacia species, the predominant trees of the Sahara as well as Herbaspirillum (Oxalobacteraceae), a group of chemoorganotrophic free-living soil inhabitants that fix nitrogen in association with Gramineae roots. Few pathogenic strains were found, suggesting that African dust is not a large threat to public health. KW - Aeolian KW - High throughput sequencing KW - Bodélé Depression KW - Republic of Chad KW - Wind erosion PY - 2013 DO - https://doi.org/10.1038/ismej.2012.152 SN - 1751-7362 SN - 1751-7370 VL - 7 SP - 850 EP - 867 PB - Nature Publishing Group CY - Basingstoke AN - OPUS4-28083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Giongo, A. A1 - Favet, J. A1 - Lapanje, A. A1 - Gano, K.A. A1 - Kennedy, S. A1 - Davis-Richardson, A.G. A1 - Brown, C. A1 - Beck, A. A1 - Farmerie, W.G. A1 - Cattaneo, A. A1 - Crabb, D.B. A1 - Aung, Y.-Y. A1 - Kort, R. A1 - Brumsack, H.-J. A1 - Schnetger, B. A1 - Broughton, William J. A1 - Gorbushina, Anna A1 - Triplett, E.W. T1 - Microbial hitchhikers on intercontinental dust: high-throughput sequencing to catalogue microbes in small sand samples JF - Aerobiologia N2 - Microbiological studies on the intercontinental transport of dust are confounded by the difficulty of obtaining sufficient material for analysis. Axenic samples of dust collected at high altitudes or historic specimens in museums are often so small and precious that the material can only be sacrificed when positive results are assured. With this in mind, we evaluated current methods and developed new ones in an attempt to catalogue all microbes present in small dust or sand samples. The methods used included classical microbiological approaches in which sand extracts were plated out on a variety of different media, polymerase chain reaction (PCR)-based amplification of 16S/18S rRNA sequences followed by construction of clone libraries, PCR amplification of 16S rRNA sequences followed by high-throughput sequencing (HtS) of the products and direct HtS of DNA extracted from the sand. A representative sand sample collected at Bahaï Wadi in the desert of the Republic of Chad was used. HtS with or without amplification showed the most promise and can be performed on ≤100 ng DNA. Since living microbes are often required, current best practices would involve geochemical and microscopic characterisation of the sample, followed by DNA isolation and direct HtS. Once the microbial content of the sample has been deciphered, growth conditions (including media) can be tailored to isolate the micro-organisms of interest. KW - Chad KW - Deserts KW - Eukaryota KW - 16S amplicons KW - Metagenomics PY - 2013 DO - https://doi.org/10.1007/s10453-012-9264-0 SN - 0393-5965 SN - 1573-3025 VL - 29 IS - 1 SP - 71 EP - 84 PB - Springer Science + Business Media B.V. CY - Dordrecht [u.a.] AN - OPUS4-27687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bleeker, E. A1 - Visser, M. A1 - Groenewold, M. A1 - Blab, G. A1 - Brouwer, D. A1 - Sultan, Y. A1 - Gagnon, C. A1 - Wilkinson, K. A1 - Doa, M. A1 - Boyes, W. A1 - Kiyota, Y. A1 - Yanase, K. A1 - Holmqvist, J. A1 - Rasmussen, K. A1 - Sumrein, A. A1 - Clancy, S. A1 - Brown, S. A1 - Carlander, D. A1 - Murphy, L. A1 - Bresch, Harald A1 - Hund-Rinke, K. A1 - Igarashi, T. A1 - Riego-Sintes, J. A1 - Tentschert, J. T1 - Physical-chemical properties of nanomaterials: Evaluation of methods applied in the OECD-WPMN Testing Programme T2 - Series on the Safety of Manufactured Nanomaterials N2 - The Sponsorship Programme for the Testing of Manufactured Nanomaterials (further referred to as “the Testing Programme”) was concluded in March 2013, and the publication of the dossiers via the OECD website (www.oecd.org/science/nanosafety) started in June 2015. As indicated in the “Guidance manual for the testing of manufactured nanomaterials: OECD’s sponsorship programme”, after conclusion of the Testing Programme a next step is to consider “the status, need for, and coordination of further test development”. Parallel to concluding the final stages of the Testing Programme, a series of workshops have taken place, in which for different topics the applicability of existing OECD test guidelines for nanomaterials was discussed and the need for new ones analysed. One workshop focussed on physico-chemical methods, addressing in detail the relevance of each physico-chemical endpoint proposed in the Testing Programme for the regulation of nanomaterials. The methods were discussed in more general terms. However, as most of the proposed endpoints are new to the OECD Test Guidelines Programme, a much more detailed evaluation of the applied methods would be highly relevant. To this extent,the Netherlands volunteered to lead an initial detailed evaluation of the applicability of the test methods applied to determine the physico-chemical properties of different types of nanomaterials in the Testing Programme. This initial focus on physico-chemical properties was prompted by the essential need for an adequate and complete characterisation of nanomaterials to enable a further evaluation of their (toxicological) properties. A number of experts from several delegations volunteered to review and evaluate the methods applied to determine the physico-chemical properties of the nanomaterials in the Testing Programme. KW - Nanomaterialien KW - Nano KW - Nanopartikel KW - Charakterisierung KW - OECD KW - Nanomaterials PY - 2016 UR - http://www.oecd.org/env/ehs/nanosafety/publications-series-safety-manufactured-nanomaterials.htm IS - 65 SP - 1 EP - 43 CY - Paris AN - OPUS4-38495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grulke, E. A. A1 - Yamamoto, K. A1 - Kumagai, K. A1 - Häusler, Ines A1 - Österle, Werner A1 - Ortel, Erik A1 - Hodoroaba, Vasile-Dan A1 - Brown, S. C. A1 - Chan, C. A1 - Zheng, J. A1 - Yamamoto, K. A1 - Yashiki, K. A1 - Song, N. W. A1 - Kim, Y. H. A1 - Stefaniak, A. B. A1 - Schwegler-Berry, D. A1 - Coleman, V. A. A1 - Jämting, Å. K. A1 - Herrmann, J. A1 - Arakawa, T. A1 - Burchett, W. W. A1 - Lambert, J. W. A1 - Stromberg, A. J. T1 - Size and shape distributions of primary crystallites in titania aggregates JF - Advanced Powder Technology N2 - The primary crystallite size of titania powder relates to its properties in a number of applications. Transmission electron microscopy was used in this interlaboratory comparison (ILC) to measure primary crystallite size and shape distributions for a commercial aggregated titania powder. Data of four size descriptors and two shape descriptors were evaluated across nine laboratories. Data repeatability and reproducibility was evaluated by analysis of variance. One-third of the laboratory pairs had similar size descriptor data, but 83% of the pairs had similar aspect ratio data. Scale descriptor distributions were generally unimodal and were well-described by lognormal reference models. Shape descriptor distributions were multi-modal but data visualization plots demonstrated that the Weibull distribution was preferred to the normal distribution. For the equivalent circular diameter size descriptor, measurement uncertainties of the lognormal distribution scale and width parameters were 9.5% and 22%, respectively. For the aspect ratio shape descriptor, the measurement uncertainties of the Weibull distribution scale and width parameters were 7.0% and 26%, respectively. Both measurement uncertainty estimates and data visualizations should be used to analyze size and shape distributions of particles on the nanoscale. KW - Measurement uncertainty KW - Size distribution KW - Shape distribution KW - TEM KW - Titania PY - 2017 DO - https://doi.org/10.1016/j.apt.2017.03.027 SN - 0921-8831 VL - 28 IS - 7 SP - 1647 EP - 1659 PB - Elsevier B.V. AN - OPUS4-40478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Doublet, V. A1 - Poeschl, Y. A1 - Gogol-Döring, A. A1 - Alaux, C. A1 - Annoscia, D. A1 - Aurori, C. A1 - Barribeau, S. M. A1 - Bedoya-Reina, O. C. A1 - Brown, M. J. F. A1 - Bull, J. C. A1 - Flenniken, M. L. A1 - Galbraith, D. A. A1 - Genersch, E. A1 - Gisder, S. A1 - Grosse, I. A1 - Holt, H. L. A1 - Hultmark, D. A1 - Lattorff, H. M. G. A1 - Le Conte, Y. A1 - Manfredini, F. A1 - McMahon, Dino Peter A1 - Moritz, R. F. A. A1 - Nazzi, F. A1 - Niño, E. L. A1 - Nowick, K. A1 - Van Rij, R. P. A1 - Paxton, R. J. A1 - Grozinger, C. M. T1 - Unity in defence: honeybee workers exhibit conserved molecular responses to diverse pathogens JF - BMC Genomics N2 - Background: Organisms typically face infection by diverse pathogens, and hosts are thought to have developed specific responses to each type of pathogen they encounter. The advent of transcriptomics now makes it possible to test this hypothesis and compare host gene expression responses to multiple pathogens at a genome-wide scale. Here, we performed a meta-analysis of multiple published and new transcriptomes using a newly developed bioinformatics approach that filters genes based on their expression profile across datasets. Thereby, we identified common and unique molecular responses of a model host species, the honey bee (Apis mellifera), to its major pathogens and parasites: the Microsporidia Nosema apis and Nosema ceranae, RNA viruses, and the ectoparasitic mite Varroa destructor, which transmits viruses. Results: We identified a common suite of genes and conserved molecular pathways that respond to all investigated pathogens, a result that suggests a commonality in response mechanisms to diverse pathogens. We found that genes differentially expressed after infection exhibit a higher evolutionary rate than non-differentially expressed genes. Using our new bioinformatics approach, we unveiled additional pathogen-specific responses of honey bees; we found that apoptosis appeared to be an important response following microsporidian infection, while genes from the immune signalling pathways, Toll and Imd, were differentially expressed after Varroa/virus infection. Finally, we applied our bioinformatics approach and generated a gene co-expression network to identify highly connected (hub) genes that may represent important mediators and regulators of anti-pathogen responses. Conclusions: Our meta-analysis generated a comprehensive overview of the host metabolic and other biological processes that mediate interactions between insects and their pathogens. We identified key host genes and pathways that respond to phylogenetically diverse pathogens, representing an important source for future functional studies as well as offering new routes to identify or generate pathogen resilient honey bee stocks. The statistical and bioinformatics approaches that were developed for this study are broadly applicable to synthesize information across transcriptomic datasets. These approaches will likely have utility in addressing a variety of biological questions. KW - Coexpression KW - Apis mellifera KW - Nosema KW - Varroa destructor KW - DWV KW - IAPV KW - RNA virus KW - Meta-analysis KW - Transcriptomics PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-410439 DO - https://doi.org/10.1186/s12864-017-3597-6 SN - 1471-2164 VL - 18 SP - 207 EP - 224 AN - OPUS4-41043 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Alder-Rangel, A. A1 - Idnurm, A. A1 - Brand, A. A1 - Brown, A. A1 - Gorbushina, Anna A1 - Kelliher, C. A1 - Campos, C. A1 - Levin, D. A1 - Bell-Pedersen, D. A1 - Dadachova, E. A1 - Bauer, F. A1 - Gadd, G. A1 - Braus, G. A1 - Braga, G. A1 - Brancini, G. A1 - Walker, G. A1 - Druzhinina, I. A1 - Pocsi, I. A1 - Dijksterhuis, J. A1 - Aguirre, J. A1 - Hallsworth, J. A1 - Schumacher, Julia A1 - Ho Wong, K. A1 - Selbmann, L. A1 - Corrochano, L. A1 - Kupiec, M. A1 - Momany, M. A1 - Molin, M. A1 - Requena, N. A1 - Yarden, O. A1 - Cordero, R. A1 - Fischer, R. A1 - Pascon, R. A1 - Mancinelli, R. A1 - Emri, T. A1 - Basso, T. A1 - Rangel, D. T1 - The Third International Symposium on Fungal Stress - ISFUS JF - Fungal Biology N2 - Stress is a normal part of life for fungi, which can survive in environments considered inhospitable or hostile for other organisms. Due to the ability of fungi to respond to, survive in, and transform the environment, even under severe stresses, many researchers are exploring the mechanisms that enable fungi to adapt to stress. The International Symposium on Fungal Stress (ISFUS) brings together leading scientists from around the world who research fungal stress. This article discusses presentations given at the third ISFUS, held in Sao Jose dos Campos, Sao Paulo, Brazil in 2019, thereby summarizing the state-of-the-art knowledge on fungal stress, a field that includes microbiology, agriculture, ecology, biotechnology, medicine, and astrobiology. T2 - International Symposium on Fungal Stress (ISFUS) CY - Sao Jose dos Campos, Brazil DA - 20.05.2019 KW - Agricultural mycology KW - Fungal stress mechanisms and responses KW - Industrial mycology KW - Medical mycology PY - 2020 DO - https://doi.org/10.1016/j.funbio.2020.02.007 VL - 124 IS - 5 SP - 235 EP - 252 PB - Elsevier Ltd. AN - OPUS4-50953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nelson, G. A1 - Boehm, U. A1 - Bagley, S. A1 - Bajcsy, P. A1 - Bischof, J. A1 - Brown, C. M. A1 - Dauphin, A. A1 - Dobbie, I. M. A1 - Eriksson, J. E. A1 - Faklaris, O. A1 - Fernandez-Rodriguez, J. A1 - Ferrand, A. A1 - Gelman, L, A1 - Gheisari, A. A1 - Hartmann, H. A1 - Kukat, C. A1 - Laude, A. A1 - Mitkovski, M. A1 - Munck, S. A1 - North, A. J. A1 - Rasse, T. A1 - Resch-Genger, Ute A1 - Schuetz, L. C. A1 - Seitz, A. A1 - Strambio-De-Castillia, C. A1 - Swedlow, J. R. A1 - Alexopoulos, I. A1 - Aumayr, K. A1 - Avilov, S. A1 - Bakker, G.-J. A1 - Bammann, R. R. A1 - Bassi, A. A1 - Beckert, H. A1 - Beer, S. A1 - Belyaev, Y. A1 - Bierwagen, J. A1 - Birngruber, K. A. A1 - Bosch, M. A1 - Breitlow, J. A1 - Cameron, L. A. A1 - Chalfoun, J. A1 - Chambers, J. J. A1 - Chen, C.-L. A1 - Conde-Sousa, E. A1 - Corbett, A. D. A1 - Cordelieres, F. P. A1 - Del Nery, E. A1 - Dietzel, R. A1 - Eismann, F. A1 - Fazeli, E. A1 - Felscher, A. A1 - Fried, H. A1 - Gaudreault, N. A1 - Goh, W. I. A1 - Guilbert, T. A1 - Hadleigh, R. A1 - Hemmerich, P. A1 - Holst, G. A. A1 - Itano, M. S. A1 - Jaffe, C. B. A1 - Jambor, H. K. A1 - Jarvis, S. C. A1 - Keppler, A. A1 - Kirchenbuechler, D. A1 - Kirchner, M. A1 - Kobayashi, N. A1 - Krens, G. A1 - Kunis, S. A1 - Lacoste, J. A1 - Marcello, M. A1 - Martins, G. G. A1 - Metcalf, D. J. A1 - Mitchell, C. A. A1 - Moore, J. A1 - Mueller, T. A1 - Nelson, M. S. A1 - Ogg, S. A1 - Onami, S. A1 - Palmer, A. L. A1 - Paul-Gilloteaux, P. A1 - Pimentel, J. A. A1 - Plantard, L. A1 - Podder, S. A1 - Rexhepaj, E. A1 - Royon, A. A1 - Saari, M. A. A1 - Schapman, D. A1 - Schoonderwoert, V. A1 - Schroth-Diez, B. A1 - Schwartz, S. A1 - Shaw, M. A1 - Spitaler, M. A1 - Stoeckl, M. T. A1 - Sudar, D. A1 - Teillon, J. A1 - Terjung, S. A1 - Thuenauer, R. A1 - Wilms, C. D. A1 - Wright, G. D. A1 - Nitschke, R. T1 - QUAREP-LiMi: A community-driven initiative to establish guidelines for quality assessment and reproducibility for instruments and images in light microscopy JF - Journal of microscopy N2 - A modern day light microscope has evolved from a tool devoted to making primarily empirical observations to what is now a sophisticated, quantitative device that is an integral part of both physical and life science research. Nowadays, microscopes are found in nearly every experimental laboratory. However, despite their prevalent use in capturing and quantifying scientific phenomena, neither a thorough understanding of the principles underlying quantitative imaging techniques nor appropriate knowledge of how to calibrate, operate and maintain microscopes can be taken for granted. This is clearly demonstrated by the well-documented and widespread difficulties that are routinely encountered in evaluating acquired data and reproducing scientific experiments. Indeed, studies have shown that more than 70% of researchers have tried and failed to repeat another scientist’s experiments, while more than half have even failed to reproduce their own experiments1. One factor behind the reproducibility crisis of experiments published in scientific journals is the frequent underreporting of imaging methods caused by a lack of awareness and/or a lack of knowledge of the applied technique2,3. Whereas quality control procedures for some methods used in biomedical research, such as genomics (e.g., DNA sequencing, RNA-seq) or cytometry, have been introduced (e.g. ENCODE4), this issue has not been tackled for optical microscopy instrumentation and images. Although many calibration standards and protocols have been published, there is a lack of awareness and agreement on common Standards and guidelines for quality assessment and reproducibility5. In April 2020, the QUality Assessment and REProducibility for instruments and images in Light Microscopy (QUAREP-LiMi) initiative6 was formed. This initiative comprises imaging scientists from academia and industry who share a common interest in achieving a better understanding of the performance and limitations of microscopes and improved quality control (QC) in light microscopy. The ultimate goal of the QUAREP-LiMi initiative is to establish a set of common QC standards, guidelines, metadata models7,8, and tools9,10, including detailed protocols, with the ultimate aim of improving reproducible advances in scientific research. This White Paper 1) summarizes the major obstacles identified in the field that motivated the launch of the QUAREP-LiMi initiative; 2) identifies the urgent need to address these obstacles in a grassroots manner, through a community of Stakeholders including, researchers, imaging scientists11, bioimage analysts, bioimage informatics developers, corporate partners, Funding agencies, standards organizations, scientific publishers, and observers of such; 3) outlines the current actions of the QUAREPLiMi initiative, and 4) proposes future steps that can be taken to improve the dissemination and acceptance of the proposed guidelines to manage QC. To summarize, the principal goal of the QUAREP-LiMi initiative is to improve the overall quality and reproducibility of light microscope image data by introducing broadly accepted standard practices and accurately captured image data metrics. KW - Fluorescence KW - Microscopy KW - Quality assurance KW - Comparability KW - Imaging KW - Standards KW - Reference materials KW - Reliability KW - Data KW - Reference data KW - Biology KW - Medicine KW - Life science PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-530629 DO - https://doi.org/10.1111/jmi.13041 SN - 1365-2818 VL - 284 IS - 1 SP - 56 EP - 73 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-53062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Boehm, U. A1 - Nelson, G. A1 - Brown, C. M. A1 - Bagley, S. A1 - Bajcsy, P. A1 - Bischof, J. A1 - Dauphin, A. A1 - Dobbie, I. M. A1 - Eriksson, J. E. A1 - Faklaris, O. A1 - Fernandez-Rodriguez, J. A1 - Ferrand, A. A1 - Gelman, L. A1 - Gheisari, A. A1 - Hartmann, H. A1 - Kukat, C. A1 - Laude, A. A1 - Mitkovski, M. A1 - Munck, S. A1 - North, A. J. A1 - Rasse, T. M. A1 - Resch-Genger, Ute A1 - Schuetz, L. C. A1 - Seitz, A. A1 - Strambio-De-Castillia, C. A1 - Swedlow, J. R. A1 - Nitschke, R. T1 - QUAREP-LiMi: A community endeavor to advance quality assessment and reproducibility in light microscopy JF - Nature methods N2 - The community-driven initiative Quality Assessment and Reproducibility for Instruments & Images in Light Microscopy (QUAREP-LiMi) wants to improve reproducibility for light microscopy image data through Quality control (QC) management of instruments and images. It aims for a common set of QC guidelines for Hardware calibration and image acquisition, management and analysis. KW - Fluorescence KW - Microscopy KW - Quality assurance KW - Comparability KW - Imaging KW - Standards KW - Reference materials KW - Reliability KW - Data KW - Reference data KW - Biology KW - Medicine KW - Life science PY - 2021 DO - https://doi.org/10.1038/s41592-021-01162-y SN - 1548-7105 VL - 18 SP - 1424 EP - 1427 PB - Nature Publishing Group CY - London AN - OPUS4-52722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Boehm, U. A1 - Nelson, G. A1 - Brown, C. M. A1 - Bagley, S. A1 - Bajcsy, P. A1 - Bischof, J. A1 - Dauphin, A. A1 - Dobbie, I. M. A1 - Eriksson, J. E. A1 - Faklaris, O. A1 - Fernandez-Rodriguez, J. A1 - Ferrand, A. A1 - Gelman, L. A1 - Gheisari, A. A1 - Hartmann, H. A1 - Kukat, C. A1 - Laude, A. A1 - Mitkovski, M. A1 - Munck, S. A1 - North, A. J. A1 - Rasse, T. M. A1 - Resch-Genger, Ute A1 - Schuetz, L. C. A1 - Seitz, A. A1 - Strambio-De-Castillia, C. A1 - Swedlow, J. R. A1 - Nitschke, R. T1 - Author correction: QUAREP-LiMi: a community endeavor to advance quality assessment and reproducibility in light microscopy T2 - Nature methods N2 - This is a corrigendum to the original article "QUAREP-LiMi: a community endeavor to advance quality assessment and reproducibility in light microscopy" that was published in the journal "Nature methods", vol. 18 (2021), pp. 1424-1427. PY - 2022 DO - https://doi.org/10.1038/s41592-021-01387-x SN - 1548-7105 SP - 1 PB - Nature Publishing Group CY - London AN - OPUS4-54270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -