TY - JOUR A1 - Ahmed, A. A. A. A1 - Alegret, N. A1 - Almeida, B. A1 - Alvarez-Puebla, R. A1 - Andrews, A. M. A1 - Ballerini, L. A1 - Barrios-Capuchino, J. J. A1 - Becker, C. A1 - Blick, R. H. A1 - Bonakdar, S. A1 - Chakraborty, I. A1 - Chen, X. A1 - Cheon, J. A1 - Chilla, G. A1 - Conceicao, A. L. C. A1 - Delehanty, J. A1 - Dulle, M. A1 - Efros, A. L. A1 - Epple, M. A1 - Fedyk, M. A1 - Feliu, N. A1 - Feng, M. A1 - Fernandez-Chacon, R. A1 - Fernandez-Cuesta, I. A1 - Fertig, N. A1 - Förster, S. A1 - Garrido, J. A. A1 - George, M. A1 - Guse, A. H. A1 - Hampp, N. A1 - Harberts, J. A1 - Han, J. A1 - Heekeren, H. R. A1 - Hofmann, U. G. A1 - Holzapfel, M. A1 - Hosseinkazemi, H. A1 - Huang, Y. A1 - Huber, P. A1 - Hyeon, T. A1 - Ingebrandt, S. A1 - Ienca, M. A1 - Iske, A. A1 - Kang, Y. A1 - Kasieczka, G. A1 - Kim, D.-H. A1 - Kostarelos, K. A1 - Lee, J.-H. A1 - Lin, K.-W. A1 - Liu, S. A1 - Liu, X. A1 - Liu, Y. A1 - Lohr, C. A1 - Mailänder, V. A1 - Maffongelli, L. A1 - Megahed, S. A1 - Mews, A. A1 - Mutas, M. A1 - Nack, L. A1 - Nakatsuka, N. A1 - Oertner, T. G. A1 - Offenhäusser, A. A1 - Oheim, M. A1 - Otange, B. A1 - Otto, F. A1 - Patrono, E. A1 - Peng, B. A1 - Picchiotti, A. A1 - Pierini, F. A1 - Pötter-Nerger, M. A1 - Pozzi, M. A1 - Pralle, A. A1 - Prato, M. A1 - Qi, B. A1 - Ramos-Cabrer, P. A1 - Resch-Genger, Ute A1 - Ritter, N. A1 - Rittner, M. A1 - Roy, S. A1 - Santoro, F. A1 - Schuck, N. W. A1 - Schulz, F. A1 - Seker, E. A1 - Skiba, M. A1 - Sosniok, M. A1 - Stephan, H. A1 - Wang, R. A1 - Wang, T. A1 - Wegner, Karl David A1 - Weiss, P. S. A1 - Xu, M. A1 - Yang, C. A1 - Zargarin, S. S. A1 - Zeng, Y. A1 - Zhou, Y. A1 - Zhu, D. A1 - Zierold, R. A1 - Parak, W. J. T1 - Interfacing with the Brain: How Nanotechnology Can Contribute N2 - Interfacing artificial devices with the human brain is the central goal of neurotechnology. Yet, our imaginations are often limited by currently available paradigms and technologies. Suggestions for brain−machine interfaces have changed over time, along with the available technology. Mechanical levers and cable winches were used to move parts of the brain during the mechanical age. Sophisticated electronic wiring and remote control have arisen during the electronic age, ultimately leading to plug-and-play computer interfaces. Nonetheless, our brains are so complex that these visions, until recently, largely remained unreachable dreams. The general problem, thus far, is that most of our technology is mechanically and/or electrically engineered, whereas the brain is a living, dynamic entity. As a result, these worlds are difficult to interface with one another. Nanotechnology, which encompasses engineered solid-state objects and integrated circuits, excels at small length scales of single to a few hundred nanometers and, thus, matches the sizes of biomolecules, biomolecular assemblies, and parts of cells. Consequently, we envision nanomaterials and nanotools as opportunities to interface with the brain in alternative ways. Here, we review the existing literature on the use of nanotechnology in brain−machine interfaces and look forward in discussing perspectives and limitations based on the authors’ expertise across a range of complementary disciplines from neuroscience, engineering, physics, and chemistry to biology and medicine, computer science and mathematics, and social science and jurisprudence. We focus on nanotechnology but also include information from related fields when useful and complementary. KW - Nanoneuro interface KW - Brain-on-a-chip KW - Nanostructured interface KW - Electrode arrays KW - Neuro-implants KW - Advanced nanomaterials KW - Quality assurance PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634893 DO - https://doi.org/10.1021/acsnano.4c10525 SN - 1936-086X VL - 19 IS - 11 SP - 10630 EP - 10717 PB - ACS Publications AN - OPUS4-63489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ricci, M. A1 - Shegunova, P. A1 - Conneely, P. A1 - Becker, Roland A1 - Torres, M. M. A1 - Osuna, M. A. A1 - On, T.P. A1 - Man, L.H. A1 - Baek, S.-Y. A1 - Kim, B. A1 - Hopley, C. A1 - Liscio, C. A1 - Warren, J. A1 - Le Diouron, V. A1 - Lardy-Fontan, S. A1 - Lalere, B. A1 - Mingwu, S. A1 - Kucklick, J. A1 - Vamathevan, V. A1 - Matsuyama, S. A1 - Numata, M. A1 - Brits, M. A1 - Quinn, L. A1 - Fernandes-Whaley, M. A1 - Gören, A.C. A1 - Binici, B. A1 - Konopelko, L. A1 - Krylov, A. A1 - Mikheeva, A. T1 - CCQM-K102: Polybrominated diphenyl ethers in sediment N2 - The key comparison CCQM-K102: Polybrominated diphenyl ethers in sediment was coordinated by the JRC, Directorate F - Health, Consumers & Reference Materials, Geel (Belgium) under the auspices of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM). Thirteen National Metrology institutes or Designated Institutes and the JRC participated. Participants were requested to report the mass fraction (on a dry mass basis) of BDE 47, 99 and 153 in the freshwater sediment study material. The sediment originated from a river in Belgium and contained PBDEs (and other pollutants) at levels commonly found in environmental samples. The comparison was designed to demonstrate participants' capability of analysing non-polar organic molecules in abiotic dried matrices (approximate range of molecular weights: 100 to 800 g/mol, polarity corresponding to pKow < −2, range of mass fraction: 1–1000 μg/kg). All participants (except one using ultrasonic extraction) applied Pressurised Liquid Extraction or Soxhlet, while the instrumental analysis was performed with GC-MS/MS, GC-MS or GC-HRMS. Isotope Dilution Mass Spectrometry approach was used for quantification (except in one case). The assigned Key Comparison Reference Values (KCRVs) were the medians of thirteen results for BDE 47 and eleven results for BDE 99 and 153, respectively. BDE 47 was assigned a KCRV of 15.60 μg/kg with a combined standard uncertainty of 0.41 μg/kg, BDE 99 was assigned a KCRV of 33.69 μg/kg with a combined standard uncertainty of 0.81 μg/kg and BDE 153 was assigned a KCRV of 6.28 μg/kg with a combined standard uncertainty of 0.28 μg/kg. The k-factor for the estimation of the expanded uncertainty of the KCRVs was chosen as k = 2. KW - Intercomparison KW - Traceability KW - Nation metrology institutes PY - 2017 DO - https://doi.org/10.1088/0026-1394/54/1A/08026 SN - 0026-1394 SN - 1681-7575 VL - 54 SP - 08026, 1 EP - 82 AN - OPUS4-41998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Souza Machado, A. A. A1 - Lau, C. W. A1 - Till, J. A1 - Kloas, W. A1 - Lehmann, A. A1 - Becker, Roland A1 - Rillig, M. C. T1 - Impacts of microplastics on the soil biophysical environment N2 - Soils are essential components of terrestrial ecosystems that experience strong pollution pressure. Microplastic contamination of soils is being increasingly documented, with potential consequences for soil biodiversity and function. Notwithstanding, data on effects of such contaminants on fundamental properties potentially impacting soil biota are lacking. The present study explores the potential of microplastics to disturb vital relationships between soil and water, as well as its consequences for soil structure and microbial function. During a 5-weeks garden experiment we exposed a loamy sand soil to environmentally relevant nominal concentrations (up to 2%) of four common microplastic types (polyacrylic fibers, polyamide beads, polyester fibers, and polyethylene fragments). Then, we measured bulk density, water holding capacity, hydraulic conductivity, soil aggregation, and microbial activity. Microplastics affected the bulk density, water holding capacity, and the functional relationship between the microbial activity and water stable aggregates. The effects are underestimated if idiosyncrasies of particle type and concentrations are neglected, suggesting that purely qualitative environmental microplastic data might be of limited value for the assessment of effects in soil. If extended to other soils and plastic types, the processes unravelled here suggest that microplastics are relevant long-term anthropogenic stressors and drivers of global change in terrestrial ecosystems. KW - Mikroplastik KW - Einfluß KW - Boden PY - 2018 DO - https://doi.org/10.1021/acs.est.8b02212 SN - 0013-936X SN - 1520-5851 VL - 52 IS - 17 SP - 9656 EP - 9665 PB - American Chemical Society AN - OPUS4-46547 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bayerl, C. A1 - Shahryari, M. A1 - Reiter, R. A1 - Proß, V. A1 - Lehmann, K. A1 - Kühl, A. A. A1 - Becker, Dorit A1 - Schulz, Andreas A1 - Infante Duarte, C. A1 - Taupitz, M. A1 - Geisel, D. A1 - Tzschätzsch, H. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Asbach, P. T1 - Quantitative Analysis of Gadolinium Deposits in Liver Tissue of Patients After Single or Multiple Gadolinium-based Contrast Agent Application N2 - Gadolinium-based contrast agents (GBCAs) are widely used in magnetic resonance imaging. Concerns exist regarding gadolinium deposition and its potential histopathologic tissue alterations, especially after repeated administrations of linear, less stable GBCAs. This study aimed to quantify gadolinium mass fractions in liver specimens of subjects exposed to GBCAs in correlation with histopathologic features. In this study, mass fractions of gadolinium in human liver specimens from 25 subjects who underwent liver tumor resection surgery and had received GBCA (1 to 9 times over 4 years), were quantitatively analyzed using inductively coupled plasma–mass spectrometry (ICP-MS). Histomorphology was assessed based on the nonalcoholic fatty liver disease activity score (NAS). Our results suggest that after intravenous administration of GBCA, a small fraction of gadolinium is retained in the liver over a time period of at least several weeks. A relationship was observed between Gadolinium retention and the number of GBCA administrations, but not with the cumulative dose and the degree of fatty liver disease. KW - ICP-MS KW - Contrast agent KW - Gadolinium KW - Liver PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-646608 DO - https://doi.org/10.1097/RLI.0000000000001254 SN - 1536-0210 SP - 1 EP - 10 PB - Lippincott Williams & Wilkins CY - Philadelphia, Pa. AN - OPUS4-64660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - de Souza Machado, A. A. A1 - Lau, C. W. A1 - Kloas, W. A1 - Bergmann, J. A1 - Bachelier, J. B. A1 - Faltin, E. A1 - Becker, Roland A1 - Görlich, A. S. A1 - Rillig, M. C. T1 - Microplastics can change soil properties and affect plant performance N2 - Microplastics can affect biophysical properties of the soil. However, little is known about the cascade of events in fundamental levels of terrestrial ecosystems, i.e., starting with the changes in soil abiotic properties and propagating across the various components of soil−plant interactions, including soil microbial communities and plant traits. We investigated here the effects of six different microplastics (polyester fibers, polyamide beads, and four fragment types: polyethylene, polyester terephthalate, polypropylene, and polystyrene) on a broad suite of proxies for soil health and performance of spring onion (Allium fistulosum). Significant changes were observed in plant biomass, tissue elemental composition, root traits, and soil microbial activities. These plant and soil responses to microplastic exposure were used to propose a causal model for the mechanism of the effects. Impacts were dependent on particle type, i.e., microplastics with a shape similar to other natural soil particles elicited smaller differences from control. Changes in soil structure and water dynamics may explain the observed results in which polyester fibers and polyamide beads triggered the most pronounced impacts on plant traits and function. The findings reported here imply that the pervasive microplastic contamination in soil may have consequences for plant performance and thus for agroecosystems and terrestrial biodiversity. KW - Mikroplastik KW - Boden KW - Pflanzenwachstum PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-484181 DO - https://doi.org/10.1021/acs.est.9b01339 SN - 0013-936X SN - 1520-5851 VL - 53 IS - 10 SP - 6044 EP - 6052 PB - ACS AN - OPUS4-48418 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gupta, P. A1 - Karnaushenko, D. D. A1 - Becker, C. A1 - Okur, I. E. A1 - Melzer, Michael A1 - Özer, B. A1 - Schmidt, O. G. A1 - Karnaushenko, D. T1 - Large Scale Exchange Coupled Metallic Multilayers by Roll-to-Roll (R2R) Process for Advanced Printed Magnetoelectronics N2 - Till now application of printed magnetoelectronics is hindered by lack of large area exchange coupled metallic multilayers required to produce printable magneto-sensory inks. Large-scale roll-to-roll (R2R) fabrication process is an attractive approach owing to its capabilities for high volume, high throughput, and large area manufacturing. Precise and high performance R2R sputtering technology is developed to fabricate large area giant magnetoresistive (GMR) thin-films stacks that contain 30 metallic bilayers prepared by continuous R2R sputtering of Co and Cu sequential on a hundred meters long polyethylene terephthalate (PET) web. The R2R sputtered Co/Cu multilayer on a 0.2 × 100 m2 PET web exhibits a GMR ratio of ≈40% achieving the largest area exchange coupled room temperature magneto-sensitive system demonstrated to date. The prepared GMR thin-film is converted to magnetosensitive ink that enables printing of magnetic sensors with high performance in a cost-efficient way, which promotes integration with printed electronics. An average GMR ratio of ≈18% is obtained for 370 printed magnetic sensors. The realized precise R2R sputtering approach can also be extended to a wide range of hybrid thin-film material systems opening up a path for new functional inks applied with printing technologies. KW - Printed Electronics KW - Flexible Magnetic Sensors KW - Roll-to-Roll Processing KW - Functional Materials KW - Upscaling PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552344 DO - https://doi.org/10.1002/admt.202200190 SN - 2365-709X SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim, Deutschland AN - OPUS4-55234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer-Tenhagen, C. A1 - Johnen, D. A1 - Nehls, Irene A1 - Becker, Roland T1 - A Proof of Concept: Are Detection Dogs a Useful Tool to Verify Potential Biomarkers for Lung Cancer? N2 - Early and reliable diagnostic test is essential for effective therapy of lung cancer. Volatile organic compounds that are characteristic for cancer could serve as valuable biomarkers in cancer diagnosis. Both trace analytical and detection dog approaches give some evidence for the existence of such biomarkers. In this proof of concept, study dogs and trace analysis were implemented in combination to gain more information concerning cancer biomarkers. Two dogs were trained to distinguish between absorbed breath samples of lung cancer patients and healthy persons and succeeded with correct identification of patients with 9/9 and 8/9 and correct negative indications from of 8/10 and 4/10 samples from healthy individuals. A recent observational study found that breath samples from lung cancer patients showed an increase in 1-butanol, 2-butanone, 2-pentanone, and hexanal. Synthetic air samples were therefore fortified with these compounds and adsorbed to a fleece. Tested against breath samples from healthy probands, on presentation to the dogs these synthetic samples provoked an indication in three out of four samples. We were able to demonstrate that a combination of the natural nose of a dog and a trace analytic technique can be a valuable concept in the search for cancer biomarkers. KW - Lung cancer KW - Breath KW - Detection dog KW - Biomarkers KW - Sampling KW - Synthetic air PY - 2018 DO - https://doi.org/10.3389/fvets.2018.00052 SN - 2297-1769 VL - 5 SP - Article 52,1 EP - 6 PB - Frontiers Research Foundation CY - Lausanne AN - OPUS4-44466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Nehls, Irene A1 - Schallschmidt, Kristin A1 - Becker, Roland A1 - Fischer-Tenhagen, C. A1 - Johnen, D. A1 - Leschber, G. A1 - Frese, S. A1 - Neudecker, J. A1 - Walles, T. ED - Schüler, C. ED - Püschel, K. T1 - BIOAIR - Ein interdisziplinäres Projekt zur Bestimmung von Krebsmarkern in der Atemluft N2 - Wie viele Forschergruppen, haben auch wir uns das langfristige Ziel gesetzt, einen Beitrag bei der Beantwortung der Frage zu leisten, was Hunde riechen, wenn sie Krebs erschnüffeln. Dabei sollen die Hunde nicht nur anzeigen, ob eine Atemluftprobe positiv oder negativ ist, sondern sie sollen auch aktiv eingebunden werden in den systematischen Suchprozess nach detektierbaren Biomarkern. So ist geplant, dass mittels eines präparativen Fraktionssammlers definierte Schnitte des Gaschromatogramms einzeln oder in möglichen Kombinationen auf das Adsorbervlies gebracht werden, um im Hundetraining eingesetzt zu werden. In analoger Weise könnte auch mit spezifischen Kandidatensubstanzen verfahren werden. PY - 2015 SN - 978-3-8300-8763-2 N1 - Serientitel: Forschungsergebnisse aus dem Institut für Rechtsmedizin der Universität Hamburg – Series title: Forschungsergebnisse aus dem Institut für Rechtsmedizin der Universität Hamburg VL - 30 SP - 93 EP - 101 PB - Dr. Kovac AN - OPUS4-33165 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schallschmidt, Kristin A1 - Becker, Roland A1 - Zwaka, H. A1 - Menzel, R. A1 - Johnen, D. A1 - Fischer-Tenhagen, C. A1 - Rolff, J. A1 - Nehls, Irene T1 - In vitro cultured lung cancer cells are not suitable for animal-based breath biomarker detection N2 - In vitro cultured lung cancer cell lines were investigated regarding the possible identification of volatile organic compounds as potential biomarkers. Gas samples from the headspace of pure culture medium and from the cultures of human lung adenocarcinoma cell lines A549 and Lu7466 were exposed to polypropylene fleece in order to absorb odour components. Sniffer dogs were trained with loaded fleeces of both cell lines, and honey bees were trained with fleeces exposed to A549. Afterwards, their ability to distinguish between cell-free culture medium odour and lung cancer cell odour was tested. Neither bees nor dogs were able to discriminate between odours from the cancer cell cultures and the pure culture medium. Solid phase micro extraction followed by gas chromatography with mass selective detection produced profiles of volatiles from the headspace offered to the animals. The profiles from the cell lines were largely similar; distinct differences were based on the decrease of volatile culture medium components due to the cells' metabolic activity. In summary, cultured lung cancer cell lines do not produce any biomarkers recognizable by animals or gas chromatographic analysis. KW - A549 KW - Honey bees KW - Odour discrimination task KW - Sniffer dogs KW - Solid phase microextraction KW - Volatile organic compounds KW - Volatilome PY - 2015 DO - https://doi.org/10.1088/1752-7155/9/2/027103 SN - 1752-7155 SN - 1752-7163 VL - 9 IS - 2 SP - 027103-1 EP - 027103-10 PB - IOP CY - Bristol AN - OPUS4-34161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fischer-Tenhagen, C. A1 - Johnen, D. A1 - Heuwieser, W. A1 - Becker, Roland A1 - Schallschmidt, Kristin A1 - Nehls, Irene T1 - Odor Perception by Dogs: Evaluating Two Training Approaches for Odor Learning of Sniffer Dogs N2 - In this study, a standardized experimental set-up with various combinations of herbs as odor sources was designed. Two training approaches for sniffer dogs were compared; first, Training with a pure reference odor, and second, training with a variety of odor mixtures with the target odor as a common denominator. The ability of the dogs to identify the target odor in a new context was tested. Six different herbs (basil, St. John’s wort, dandelion, marjoram, parsley, ribwort) were chosen to produce reference materials in various mixtures with (positive) and without (negative)chamomile as the target odor source. The dogs were trained to show 1 of 2 different behaviors, 1 for the positive, and 1 for the negative sample as a yes/no task. Tests were double blind with one sample presented at a time. In both training approaches, dogs were able to detect chamomile as the target odor in any presented mixture with an average sensitivity of 72% and a specificity of 84%. Dogs trained with odor mixture containing the target odor had more correct indications in the transfer task. KW - dog training KW - herbs KW - reference materials, KW - scent dog KW - smell KW - training model PY - 2017 DO - https://doi.org/10.1093/chemse/bjx020 SN - 1464-3553 SN - 0379-864X VL - 42 IS - 5 SP - 435 EP - 441 PB - Oxford University Press AN - OPUS4-40786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -