TY - JOUR A1 - Schmid, C. A1 - Falkenhagen, Jana A1 - Beskers, T.F. A1 - Nguyen, L.-T.T. A1 - Wilhelm, M. A1 - Du Prez, F.E. A1 - Barner-Kowollik, C. T1 - Multi-block polyurethanes via RAFT end-group switching and their characterization by advanced hyphenated techniques N2 - The detailed characterization of poly(styrene)-b-poly(tetrahydrofuran) (pS-b-pTHF) multiblock copolymers (17800 g mol-1 ≤ Mn ≤ 46800 g mol-1) generated via urethane linkages is presented. The synthesis of the block copolymers is enabled via a mechanistic switch of the thiocarbonyl thio end group of a poly(styrene) to dihydroxyl terminated polymers that subsequently react with a diisocyanate terminated polytetrahydrofuran based prepolymer to form multiblock copolymer structures. The characterization of the multiblock copolymers and their substructures includes size exclusion chromatography (SEC), liquid chromatography at critical conditions (LCCC), nuclear magnetic resonance (NMR), and infrared (IR) spectroscopy as well as matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. To obtain even further details of the polymer size and its composition, SEC with triple detection as well as newly developed SEC coupled online to IR spectroscopy was carried out. The quantification of the average block fractions via online SEC-IR (41–61 mol % pTHF) is in very good agreement with the results obtained via NMR spectroscopy (39–66 mol % pTHF). PY - 2012 U6 - https://doi.org/10.1021/ma301117k SN - 0024-9297 SN - 1520-5835 VL - 45 IS - 16 SP - 6353 EP - 6362 PB - American Chemical Society CY - Washington, DC AN - OPUS4-26942 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, C. A1 - Weidner, Steffen A1 - Falkenhagen, Jana A1 - Barner-Kowollik, C. T1 - In-depth LCCC-(GELC)-SEC characterization of ABA block copolymers generated by a mechanistic switch from RAFT to ROP N2 - A recently introduced procedure involving a mechanistic switch from reversible addition–fragmentation chain transfer (RAFT) polymerization to ring-opening polymerization (ROP) to form diblock copolymers is applied to synthesize ABA (star) block copolymers. The synthetic steps include the polymerization of styrene with R-group designed RAFT agents, the transformation of the thiocarbonyl thio end groups into OH functionalities, and their subsequent chain extension by ROP. The obtained linear ABA poly(ε-caprolactone)-block-poly(styrene)-block-poly(ε-caprolactone) (pCL-b-pS-b-pCL) (12 500 g mol–1 ≤ Mn ≤ 33 000 g mol–1) and the star-shaped poly(styrene)-block-poly(ε-caprolactone) (Mn = 36 000 g mol–1) copolymers were analyzed by size exclusion chromatography (SEC), nuclear magnetic resonance (NMR), infrared (IR) spectroscopy, and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The focus of the current study is on the detailed characterization of the ABA (star) block polymers via multidimensional chromatographic techniques specifically high performance liquid chromatography coupled to size exclusion chromatography (HPLC-SEC). In particular, we demonstrate the first time separation of poly(ε-caprolactone) (pCL) homopolymer and additionally poly(styrene) (pS) from the ABA poly(ε-caprolactone)-b-poly(styrene)-b-poly(ε-caprolactone) and star-shaped poly(styrene)-b-poly(ε-caprolactone) block copolymer utilizing critical conditions (CC) for pCL with concomitant gradient elution liquid chromatography (GELC). KW - Two-dimensional-liquid chromatography (2D-LC) KW - Liquid chromatography under critical conditions (LCCC) KW - Gradient elution liquid chromatography (GELC) KW - Soft ionization mass spectrometry (ESI, MALDI) KW - Reversible addition fragmentation chain transfer (RAFT) KW - Ring opening polymerization (ROP) PY - 2012 U6 - https://doi.org/10.1021/ma2022452 SN - 0024-9297 SN - 1520-5835 VL - 45 IS - 1 SP - 87 EP - 99 PB - American Chemical Society CY - Washington, DC AN - OPUS4-25464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, C. A1 - Falkenhagen, Jana A1 - Barner-Kowollik, C. T1 - An efficient avenue to poly(styrene)-block-poly(Epsilon-caprolactone) polymers via switching from RAFT tio hydroxyl functionality: synthesis and characterization KW - 2D-liquid chromatography KW - End group transformation KW - LACCC-SEC KW - Reversible addition fragmentation chain transfer KW - Ring-opening polymerization KW - soft ionization mass spectrometry PY - 2011 U6 - https://doi.org/10.1002/pola.24299 SN - 0360-6376 SN - 0887-624X VL - 49 IS - 1 SP - 1 EP - 10 PB - Wiley CY - Hoboken, NJ AN - OPUS4-22894 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yameen, B. A1 - Zydziak, N. A1 - Weidner, Steffen A1 - Bruns, M. A1 - Barner-Kowollik, C. T1 - Conducting polymer/SWCNTs modular hybrid materials via Diels-Alder ligation N2 - The development of a facile covalent strategy for the fabrication of organic conducting polymers (OCPs)/carbon nanotubes (CNTs) based molecular hybrid materials remains a challenge and is expected to address the detrimental intrinsic bundling issue of CNTs. In view of the pristine CNTs' ability to undergo Diels–Alder reactions with dienes, we report the synthesis of a novel poly(3-hexylthiophene) (P3HT) based organic conducting polymer (OCP) with terminal cyclopentadienyl (Cp) groups. The synthetic strategy employed is based on a combination of in situ end group functionalization via Grignard metathesis (GRIM) polymerization and a subsequent end group switching via reaction with nickelocene. Characterization data from Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI–TOF MS) fully support the successful synthesis of monofunctional Cp-capped P3HT, which was found to be highly reactive toward dienophile end-capped polystyrene (PS). The Cp-capped P3HT was subsequently ligated to the surface of pristine single walled CNTs (SWCNTs). The resulting P3HT/SWCNTs molecular hybrid material was characterized using thermogravimetric analysis (TGA), elemental analysis (EA), X-ray photoelectron spectroscopy (XPS), and high resolution transmission electron microscopy (HRTEM). The data from TGA, EA, and XPS were used to quantitatively deduce the grafting density. P3HT/SWCNTs prepared with Cp capped P3HT was found to contain 2 times more P3HT than the reference sample, featuring a grafting density of 0.0510 chains·nm–2 and a periodicity of 1 P3HT chain per 748 carbon atoms of the SWCNTs. HRTEM revealed individual SWCNTs wrapped with P3HT whereas in the reference sample P3HT was adsorbed on the bundles of the SWCNTs. The results presented here provide a new avenue for designing novel materials based on CNTs and OCPs. KW - Mass spectrometry KW - Polymers PY - 2013 U6 - https://doi.org/10.1021/ma4004055 SN - 0024-9297 SN - 1520-5835 VL - 46 IS - 7 SP - 2606 EP - 2615 PB - American Chemical Society CY - Washington, DC AN - OPUS4-28575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gruendling, T. A1 - Weidner, Steffen A1 - Falkenhagen, Jana A1 - Barner-Kowollik, C. T1 - Mass spectrometry in polymer chemistry: a state-of-the-art up-date N2 - Two decades after the introduction of matrix assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI), soft ionization mass spectrometry represents a powerful toolset for the structural investigation of synthetic polymers. The present review highlights the current state-of-the-art, covering the latest developments of novel techniques, enabling instrumentation as well as the important applications of soft ionization MS from the beginning of 2008. Special attention is paid to the role that soft ionization MS has played in the mechanistic investigation of radical polymerization processes since 2005. KW - Polymerization mechanisms KW - Mass spectrometry KW - LC-MS coupling PY - 2010 U6 - https://doi.org/10.1039/b9py00347a SN - 1759-9954 SN - 1759-9962 VL - 1 IS - 5 SP - 599 EP - 617 AN - OPUS4-21906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietrich, M. A1 - Glassner, M. A1 - Gruendling, T. A1 - Schmid, Christina A1 - Falkenhagen, Jana A1 - Barner-Kowollik, C. T1 - Facile conversion of RAFT polymers into hydroxyl functional polymers: a detailed investigation of variable monomer and RAFT agent combinations N2 - We report the systematic investigation of a recently introduced one-pot radical transformation of methacrylate and acrylate-type polymers prepared via reversible addition fragmentation chain transfer (RAFT) polymerization into hydroxyl functional polymers. The simple reaction procedure involves stirring a solution of the RAFT functional polymer and an azo-initiator in tetrahydrofuran at elevated temperatures (T = 60 °C) in the presence of ambient air. Subsequent reduction of the formed hydroperoxide functional polymers to hydroxyl functional polymers is achieved in a one-pot procedure using triphenylphosphine. Polymers investigated in the current study are poly(methyl acrylate) (pMA), poly(butyl acrylate) (pBA), poly(isobornyl acrylate) (piBoA) and poly(tert-butyl acrylate) (ptBA) carrying a dithiobenzoate or phenyldithioacetate end terminius as well as a symmetrical trithiocarbonate mid chain function. Quantitative conversion into the hydroperoxyl and hydroxyl terminated product is observed when trithiocarbonate functional polymers are employed. In the case of dithiobenzoate and phenyldithioacetate functional acrylic polymers, some minor side products due to the oxidation of the RAFT end-group are generated. Size exclusion chromatography (SEC) and size exclusion chromatography–electrospray mass spectrometry (SEC-ESI-MS) were employed to monitor the progress of the reaction and to investigate the proposed reaction mechanism for the model polymers. When trithiocarbonate functional polymers are employed in the transformation reaction, the SEC analysis shows a bisection of the initial Mn. Collision induced dissociation (CID) MS experiments of the intermediate reaction products were conducted to gain in-depth information about the chemical structure. The new backbone linked hydroxyl group provides a versatile anchor for chemical end-group conversions and conjugation reactions with RAFT prepared polymers, alleviating problems with the rather limited ability of the dithioester end-group to undergo non-radical transformations. KW - Polymers KW - RAFT KW - SEC/ESI-mass spectrometry KW - CID-MS PY - 2010 U6 - https://doi.org/10.1039/b9py00273a SN - 1759-9954 SN - 1759-9962 VL - 1 IS - 5 SP - 634 EP - 644 AN - OPUS4-21907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zydziak, N. A1 - Konrad, W. A1 - Feist, F. A1 - Afonin, S. A1 - Weidner, Steffen A1 - Barner-Kowollik, C. T1 - Coding and decoding libraries of sequence-defined functional copolymers synthesized via photoligation N2 - Designing artificial macromolecules with absolute sequence order represents a considerable challenge. Here we report an advanced light-induced avenue to monodisperse sequencedefined functional linear macromolecules up to decamers via a unique photochemical approach. The versatility of the synthetic strategy—combining sequential and modular concepts—enables the synthesis of perfect macromolecules varying in chemical constitution and topology. Specific functions are placed at arbitrary positions along the chain via the successive addition of monomer units and blocks, leading to a library of functional homopolymers, alternating copolymers and block copolymers. The in-depth characterization of each sequence-defined chain confirms the precision nature of the macromolecules. Decoding of the functional information contained in the molecular structure is achieved via tandem mass spectrometry without recourse to their synthetic history, showing that the sequence information can be read.We submit that the presented photochemical strategy is a viable and advanced concept for coding individual monomer units along a macromolecular chain. KW - Photoligation KW - Copolymer sequence KW - MALDI-TOF MS/MS PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-391542 SN - 2041-1723 VL - 7 SP - Artikel Nr. 13672 AN - OPUS4-39154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steinkönig, J. A1 - Bloesser, F. R. A1 - Huber, B. A1 - Welle, A. A1 - Trouillet, V. A1 - Weidner, Steffen A1 - Barner, L. A1 - Roesky, P. W. A1 - Yuan, J. A1 - Goldmann, A. S. A1 - Barner-Kowollik, C. T1 - Controlled radical polymerization and in-depth mass-spectrometric characterization of poly(ionic liquid)s and their photopatterning on surfaces N2 - The preparation and characterization of poly(ionic liquid)s (PILs) bearing a polystyrene backbone via reversible addition fragmentation chain transfer (RAFT) polymerization and their photolithographic patterning on silicon wafers is reported. The controlled radical polymerization of the styrenic ionic liquid (IL) monomers ([BVBIM]X, X = Cl− or Tf2N−) by RAFT polymerization is investigated in detail. We provide a general synthetic tool to access this class of PILs with controlled molecular weight and relatively narrow molecular weight distribution (2000 g mol−1 ≤ Mn ≤ 10 000 g mol−1 with dispersities between 1.4 and 1.3 for p([BVBIM]Cl); 2100 g mol−1 ≤ MP ≤ 14 000 g mol−1 for p([BVBIM]Tf2N)). More importantly, we provide an in-depth characterization of the PILs and demonstrate a detailed mass spectrometric analysis via matrix-assisted laser desorption ionization (MALDI) as well as – for the first time for PILs – electrospray ionization mass spectrometry (ESI-MS). Importantly, p([BVBIM]Cl) and p([DMVBIM]Tf2N) were photochemically patterned on silicon wafers. Therefore, a RAFT agent carrying a photoactive group based on ortho-quinodimethane chemistry – more precisely photoenol chemistry – was photochemically linked for subsequent controlled radical polymerization of [BVBIM]Cl and [DMVBIM]Tf2N. The successful spatially-resolved photografting is evidenced by surface-sensitive characterization methods such as X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The presented method allows for the functionalization of diverse surfaces with poly(ionic liquid)s. KW - reversible addition fragmentation chain transfer (RAFT) polymerization KW - polyionic liquids KW - mass spectrometry KW - surface modification PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-355202 VL - 7 SP - 451 EP - 461 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-35520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -