TY - JOUR A1 - Raschpichler, C. A1 - Goroncy, C. A1 - Langer, B. A1 - Antonsson, E. A1 - Wassermann, B. A1 - Graf, C. A1 - Klack, Patrick A1 - Lischke, T. A1 - Rühl, E. T1 - Surface Properties and Porosity of Silica Particles Studied by Wide-Angle Soft X-ray Scattering N2 - Wide-angle soft X-ray scattering on free silica particles of different porosity prepared in a beam is reported. The explored q region is mostly dominated by features due to surface roughness and bulk porosity. A comprehensive experimental and theoretical analysis of silica particles of different porosity is presented for various incident photon energies. A correlation analysis, based on the theory of Porod, is used to test the validity of exact Mie theory in different pore density limits. The ability of the discrete dipole scattering model (DDSCAT) to resolve local effects, caused by various pore distributions, is discussed. Characteristic differences between the soft X-ray scattering patterns of the particle samples of different surface properties and porosity are detected. For all mentioned cases, it was confirmed that the effective radius concept of the Guinier model can be successfully extended to Mie theory and DDSCAT in describing the additive contributions of the primary particles, including a thin inhomogeneous solvent-rich surface shell and empty bulk pores. Close agreement, within ±15%, between the calculated and observed pore sizes and porosity values is reached. The influence of pores is alternatively described either in terms of secondary Mie scattering, which is modulated by the local internal electrical field within the particles, or by an independent Mie scattering process induced by the incident field on isolated pores. It is found that for the typical pore/particle size ratios the latter approach presents the best choice. KW - Wide-Angle Soft X‑ray Scattering KW - Silica KW - Porosity PY - 2020 DO - https://doi.org/10.1021/acs.jpcc.0c04308 SN - 1932-7447 SN - 1932-7455 VL - 124 SP - 16663 EP - 16674 AN - OPUS4-51089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Kembuan, C A1 - Graf, C T1 - Gold-shell coated NaYF4:Er3+, Yb3+ nanoparticles for the enhancement of fluorescence emission N2 - In the present work, we aim to explore how far the UCNP emission intensity can be enhanced by the aid of plasmonic interactions using a gold shell. The distance between the UCNP core and the gold shell is varied by adding a silica spacer of different thicknesses. The synthetic conditions for obtaining UCNP@SiO2@Au core-shell nanoparticles with precisely tuneable silica shell thicknesses were investigated. A gold shell on the UCNP@SiO2 nanoparticles is expected to give rise to a noticeable enhancement of particle brightness and fluorescence, given that the thicknesses of the silica shell and the gold coating can be controlled and fine-tuned. First single particle studies revealing shortening of the Er3+ lifetimes suggest that plasmonic enhancement occurs. T2 - 2nd Conference and Spring School on Properties, Design and Applications of Upconversion Nanomaterials CY - Valencia, Spain DA - 02.04.2018 KW - Upconversion nanoparticles KW - Silica coating KW - Plasmonic enhancement PY - 2018 AN - OPUS4-44958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Saleh, Maysoon I. A1 - Kembuan, C A1 - Rühle, Bastian A1 - Graf, C A1 - Resch-Genger, Ute T1 - Gold-shell coated NaYF4:Er3+, Yb3+ nanoparticles for the enhancement of fluorescence emission N2 - In the present work, we aim to explore how far the UCNP emission intensity can be enhanced by the aid of plasmonic interactions using a gold shell. The distance between the UCNP core and the gold shell is varied by adding a silica spacer of different thicknesses. The synthetic conditions for obtaining UCNP@SiO2@Au core-shell nanoparticles with precisely tuneable silica shell thicknesses were investigated. A gold shell on the UCNP@SiO2 nanoparticles is expected to give rise to a noticeable enhancement of particle brightness and fluorescence, given that the thicknesses of the silica shell and the gold coating can be controlled and fine-tuned. First single particle studies revealing shortening of the Er3+ lifetimes suggest that plasmonic enhancement occurs. T2 - 2nd Conference and Spring School on Properties, Design and Applications of Upconversion Nanomaterials CY - Valencia, Spain DA - 02.04.2018 KW - Upconversion nanoparticles KW - Silica coating KW - Plasmonic enhancement PY - 2018 AN - OPUS4-44969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kunz, C. A1 - Büttner, T.N. A1 - Naumann, B. A1 - Boehm, A.V. A1 - Gnecco, E. A1 - Bonse, Jörn A1 - Neumann, C. A1 - Turchanin, A. A1 - Müller, F.A. A1 - Gräf, S. T1 - Large-area fabrication of low- and high-spatial-frequency laser-induced periodic surface structures on carbon fibers N2 - The formation and properties of laser-induced periodic surface structures (LIPSS) were investigated on carbon fibers under irradiation of fs-laser pulses characterized by a pulse duration τ = 300 fs and a laser wavelength λ = 1025 nm. The LIPSS were fabricated in an air environment at normal incidence with different values of the laser peak fluence and number of pulses per spot. The morphology of the generated structures was characterized by using scanning electron microscopy, atomic force microscopy and Fast-Fourier transform analyses. Moreover, the material structure and the surface chemistry of the carbon fibers before and after laser irradiation was analyzed by micro Raman spectroscopy and X-ray photoelectron spectroscopy. Large areas in the cm2 range of carbon fiber arrangements were successfully processed with homogenously distributed high- and low-spatial frequency LIPSS. Beyond those distinct nanostructures, hybrid structures were realized for the very first time by a superposition of both types of LIPSS in a two-step process. The findings facilitate the fabrication of tailored LIPSS-based surface structures on carbon fibers that could be of particular interest for e.g. fiber reinforced polymers and concretes. KW - Fs-Laser KW - Laser-induced periodic surface structures (LIPSS) KW - Carbon fibers KW - Large area structuring PY - 2018 UR - https://www.sciencedirect.com/science/article/pii/S0008622318302781 DO - https://doi.org/10.1016/j.carbon.2018.03.035 SN - 0008-6223 SN - 1873-3891 VL - 133 SP - 176 EP - 185 PB - Elsevier Ltd. AN - OPUS4-44625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kunz, C. A1 - Bonse, Jörn A1 - Spaltmann, Dirk A1 - Neumann, C. A1 - Turchanin, A. A1 - Bartolomé, J. F. A1 - Müller, F. A. A1 - Gräf, S. T1 - Tribological performance of metal-reinforced ceramic composites selectively structured with femtosecond laser-induced periodic surface structures N2 - The impact of femtosecond (fs) laser-induced periodic surface structures (LIPSS) on tribological properties was investigated for metal-reinforced ceramic composites (Al2O3-ZrO2-Nb). For this purpose, the metallic niobium (Nb) phase was selectively structured with LIPSS in an air environment with different values of the fs-laser peak fluence by near-infrared fs-laser radiation (λ = 1025 nm, τ = 300 fs, frep = 1 kHz), taking advantage of the different light absorption behavior of ceramic and metal. The tribological performance was evaluated by reciprocating sliding tests in a ball-on-disc configuration using Ringer's solution as lubricant. The surfaces were characterized before and after laser irradiation by optical microscopy, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and by measuring the contact angle with Ringer's solution. The LIPSS formation resulted in an increased wetting of the surface with the lubricant. Moreover, the selectively structured composite surfaces revealed a coefficient of friction significantly reduced by a factor of ~3 when compared to the non-irradiated surface. Furthermore, the formation of a laser-induced oxidation layer was detected with NbO as the most prominent oxidation state. Selectively structured composites with outstanding mechanical properties and enhanced tribological performance are of particular interest for biomedical applications. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Ceramic matrix composites KW - Tribology PY - 2020 DO - https://doi.org/10.1016/j.apsusc.2019.143917 SN - 0169-4332 SN - 1873-5584 VL - 499 IS - 1 SP - 143917 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-49255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kembuan, C. A1 - Saleh, Maysoon I. A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Graf, C. T1 - Coating of upconversion nanoparticles with silica nanoshells of 5–250 nm thickness N2 - A concept for the growth of silica shells with a thickness of 5–250 nm onto oleate-coated NaYF4:Yb3+/Er3+ upconversion nanoparticles (UCNP) is presented. The concept enables the precise adjustment of shell thicknesses for the preparation of thick-shelled nanoparticles for applications in plasmonics and sensing. First, an initial 5–11 nm thick shell is grown onto the UCNPs in a reverse microemulsion. This is followed by a stepwise growth of these particles without a purification step, where in each step equal volumes of tetraethyl orthosilicate and ammonia water are added, while the volumes of cyclohexane and the surfactant Igepal® CO-520 are increased so that the ammonia water and surfactant concentrations remain constant. Hence, the number of micelles stays constant, and their size is increased to accommodate the growing core–shell particles. Consequently, the formation of core-free silica particles is suppressed. When the negative zeta potential of the particles, which continuously decreased during the stepwise growth, falls below −40 mV, the particles can be dispersed in an ammoniacal ethanol solution and grown further by the continuous addition of tetraethyl orthosilicate to a diameter larger than 500 nm. Due to the high colloidal stability, a coalescence of the particles can be suppressed, and single-core particles are obtained. This strategy can be easily transferred to other nanomaterials for the design of plasmonic nanoconstructs and sensor systems. KW - Reverse microemulsion KW - Silica coating KW - Stepwise growth KW - Thick shells KW - Upconversion nanoparticles PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502769 DO - https://doi.org/10.3762/bjnano.10.231 SN - 2190-4286 VL - 10 SP - 2410 EP - 2421 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, M. AN - OPUS4-50276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brunner-Schwer, C. A1 - Graf, B. A1 - Rethmeier, Michael A1 - Schreiber, F. T1 - Hybrides Auftragschweißen: Potentiale des laserunterstützten Plasma-Pulver-Auftragschweißens (PTA) N2 - In diesem Beitrag wurden Untersuchungen zu einem neuartigen hybriden Laser-Plasma-Beschichtungsverfahren vorgestellt. Mit dem Ziel, die Produktivität und Wirtschaftlichkeit von Korrosions- und Verschleißschutzschichten zu steigern, wurde das kostengünstige PTA-Verfahren durch einen Laser als zweite Energiequelle ergänzt. Die vorlaufende Laserstrahlung stabilisiert den Plasmalichtbogen und ermöglicht erst eine Auftragsschweißung bei hohen Geschwindigkeiten. Die hohen Auftragraten von 4,2-5,7 kg/h bei gleichzeitig Streckenenergien von 630-720 J/cm zeigen das mögliche Potential des vorgestellten hybriden Ansatzes. In weiteren Untersuchungen muss der Prozess z.B. in Bezug auf die Oberflächenwelligkeit der Beschichtungen über eine Parameteroptimierung weiter verbessert werden. Nach den bisherigen gesammelten Erfahrungen mit dem Hybridprozess ist davon auszugehen, dass durch eine Anpassung der Energiedichteverteilung das Lasers, die Prozessgeschwindigkeiten noch einmal gesteigert werden können. T2 - 12. Fachtagung Verschleissschutz von Bauteilen durch Auftragschweissen CY - Halle, Germany DA - 13.06.2018 KW - Laser- und Lichtbogenenergie PY - 2018 SP - 104 EP - 108 AN - OPUS4-45230 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brunner-Schwer, C. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Entwicklung des hybriden Auftragschweißens als leistungsfähigen Bechichtungsprozess für Korrosions- und Verschleißschutzschichten N2 - Dieser Beitrag stellt Ergebnisse der Untersuchungen zum Auftragschweißen als Plasma-Laserstrahl-Hybrid-Prozess dar. Es hat sich gezeigt, dass ein Laserstrahl, der in einer gemeinsamen Prozesszone mit einem Plasma-Pulver-Auftragschweißprozess vorlaufend angeordnet ist, diesem Prozess eine erhebliche Geschwindigkeitssteigerung sowie eine Verbesserung der Stabilität ermöglicht. Der Hybrid-Prozess konnte mit Verschleißschutzwerkstoffen sowie dem Korrosionsschutzwerkstoff Inconel 625 bei Vorschubgeschwindigkeiten von bis zu 10 m/min erfolgreich validiert werden. Im Hinblick auf die aktuellen Entwicklungen zu Hochgeschwindiglceits-Laserstrahlauftragschweißen kann der Plasma-Laserstrahl-Hybrid-Prozess zwischen diesen und den konventionellen Verfahren eingeordnet werden. KW - Auftragschweißen KW - Hybridschweißen KW - Laserstrahlschweißen KW - Schutzgasschweißen PY - 2020 SN - 0036-7184 VL - 72 IS - 8 SP - 474 EP - 475 AN - OPUS4-51321 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brunner-Schwer, C. A1 - Petrat, T. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Highspeed-plasma-laser-cladding of thin wear resistance coatings: A process approach as a hybrid metal deposition-technology N2 - Plasma-Transferred-Arc (PTA) welding is a process that enables high deposition rates, but also causes increased thermal load on the component. Laser metal deposition (LMD) welding, on the other hand, reaches a high level of precision and thus achieves comparatively low deposition rates, which can lead to high processing costs. Combining laser and arc energy aims to exploit the respective advantages of both technologies. In this study, a novel approach of this process combination is presented using a PTA system and a 2 kW disk laser. The energy sources are combined in a common process zone as a high-speed plasma laser cladding technology (HPLC), which achieves process speeds of 10 m/min at deposition rates of 6.6 kg/h and an energy per unit length of 39 J/mm. KW - Highspeed-plasma-laser-cladding KW - Wear resistance KW - Deposition welding KW - Tungsten carbide KW - NiCrBSi PY - 2019 DO - https://doi.org/10.1016/j.vacuum.2019.05.003 SN - 0042-207X VL - 166 SP - 123 EP - 126 PB - Elsevier AN - OPUS4-48294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Uhlmann, E. A1 - Stark, R. A1 - Rethmeier, Michael A1 - Baumgarten, J. A1 - Bilz, M. A1 - Geisert, C. A1 - Graf, B. A1 - Grosser, H. A1 - Heitmüller, F. A1 - Manthei, M. A1 - Reinkober, S. A1 - Gumenyuk, A. ED - Redding, L. ED - Roy, R. T1 - Maintenance, repair and overhaul in through-life engineering services N2 - Maintenance, Repair and Overhaul (MRO) is acquiring increasing commercial and socio-economic significance. For products and goods with high investment costs and a long lifespan, especially in the sectors of energy and transportation, a considerable portion of commercial profits are generated by after-sales services. In the field of research and development, not enough attention has been paid so far to tasks and approaches involving MRO. The field thus has a limited scientific background, despite a high potential in the business sector for technological and scientific optimization. The challenges and chances of MRO for sustainable enterprises will be explained with reference to the Fraunhofer Innovation Cluster Maintenance, Repair and Overhaul in Energy and Transport. The developments and project results of the four fields of innovation »Cleaning«, »Repair and Overhaul«, »Condition Monitoring and Diagnosis«, as well as »MRO Planning and Digital Assistance« will be explained. PY - 2015 SN - 978-3-319-12111-6 DO - https://doi.org/10.1007/978-3-319-12111-6_9 N1 - Serientitel: Decision Engineering – Series title: Decision Engineering SP - Part III, Chapter 9, 129 EP - 156 PB - Springer AN - OPUS4-32553 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brunner-Schwer, C. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Laser-Plasma-Hybrid-Cladding: Possibilities in the combination 2 of arc and laser for deposition welding N2 - Plasma-Transferred-Arc (PTA) welding is a process that enables high deposition rates, but also causes increased thermal load on the component. Laser based Direct Energy Deposition (DED) welding, on the other hand, achieves a high level of precision and thus comparatively low deposition rates, which can lead to high processing costs. Combining laser and arc energy aims to exploit the respective advantages of both technologies. In this study, different possibilities of this process combination are presented using a PTA system and a 2 kW disk laser. This includes the combination in a common process zone as a highspeed plasma laser cladding technology (HPLC), which achieves process speeds of 10 m/min. Besides that it is being examined whether a pre-running plasma arc can be used to coat difficult-to-weld rail steel with a carbon content of 0.8 % due to a preheating effect. Furthermore, a smoothing of the coating by a plasma arc following the laser is investigated. T2 - Lasers in Manufacturing 2019 CY - Munich, Germany DA - 24.06.2019 KW - Plasma-Transferred-Arc KW - Direct Energy Deposition KW - highspeed plasma laser cladding KW - deposition welding PY - 2019 SP - 1 EP - 9 AN - OPUS4-48724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Petrat, T. A1 - Brunner-Schwer, C. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Microstructure of Inconel 718 parts with constant mass energy input manufactured with direct energy deposition N2 - The laser-based direct energy deposition (DED) as a technology for additive manufacturing allows the production of near net shape components. Industrial applications require a stable process to ensure reproducible quality. Instabilities in the manufacturing process can lead to faulty components which do not meet the required properties. The DED process is adjusted by various parameters such as laser power, velocity, powder mass flow and spot diameter, which interact with each other. A frequently used comparative parameter in welding is the energy per unit length and is calculated from the laser power and the velocity in laser welding. The powder per unit length comparative parameter in the DED process has also be taken into account, because this filler material absorbs energy in addition to the base material. This paper deals with the influence of mass energy as a comparative parameter for determining the properties of additively manufactured parts. The same energy per unit length of 60 J/mm as well as the same powder per unit length of 7.2 mg/mm can be adjusted with different parameter sets. The energy per unit length and the powder per unit length determine the mass energy. The laser power is varied within the experiments between 400 W and 900 W. Energy per unit length and powder per unit length are kept constant by adjusting velocity and powder mass flow. Using the example of Inconel 718, experiments are carried out with the determined parameter sets. In a first step, individual tracks are produced and analyzed by means of micro section. The geometry of the tracks shows differences in height and width. In addition, the increasing laser power leads to a higher dilution of the base material. To determine the suitability of the parameters for additive manufacturing use, the individual tracks are used to build up parts with a square base area of 20x20 mm². An investigation by Archimedean principle shows a higher porosity with lower laser power. By further analysis of the micro sections, it can be seen that at low laser power, connection errors occur between the tracks. The results show that laser power, velocity and powder mass flow have to be considered in particular, because a constant mass energy can lead to different geometric as well as microscopic properties. KW - Direct energy deposition KW - Porosity KW - Inconel 718 KW - Additive manufacturing KW - Laser metal deposition PY - 2019 SN - 2351-9789 SP - 1 EP - 12 PB - Elsevier B.V. AN - OPUS4-50007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Brunner-Schwer, C. A1 - Kersting, R. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Laser-plasma-cladding as a hybrid metal deposition-technology applying a SLM-produced copper plasma nozzle N2 - Laser-Metal-Deposition (LMD) and Plasma-Transferred-Arc (PTA) are well known Technologies which can be used for cladding purposes. The prime objective in combining LMD and PTA as a Hybrid Metal Deposition-Technology (HMD) is to achieve high Deposition rates at low thermal Impact. Possible applications are coatings for wear protection or repair welding for components made of steel. The two energy sources (laser and Plasma arc) build a Joint process Zone and are configurated to constitute a stable process at laser powers between 0.4-1 kW (defocused) and Plasma currents between 75-200 A. Stainless steel 316L serves as filler material. For this HMD process, a Plasma Cu-nozzle is designed and produced by powder bed based Selective Laser Melting. The potential of the HMD Technology is investigated and discussed considering existing process. This paper demonstrates how the interaction of the two energy sources effects the following application-relevant properties: Deposition rate, powder Efficiency and energy Input. T2 - LANE 2018 CY - Fürth, Germany DA - 3.09.2018 KW - Laser-metal-deposition KW - Plasma-transferred-arc KW - SLM printed plasma torch KW - Laser-plasma hybrid PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-470999 UR - 10.1016/j.procir.2018.08.020 DO - https://doi.org/10.1016/j.procir.2018.08.020 SN - 2212-8271 VL - CIRP 74 SP - 738 EP - 742 PB - Sciencedirect CY - Berlin AN - OPUS4-47099 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wolff, M. A1 - Wonneberger, R. A1 - Freiberg, K.E. A1 - Hertwig, Andreas A1 - Bonse, Jörn A1 - Giebeler, L. A1 - Koitzsch, A. A1 - Kunz, C. A1 - Weber, H. A1 - Hufenbach, J.K. A1 - Müller, F.A. A1 - Gräf, S. T1 - Formation of laser-induced periodic surface structures on Zr-based bulk metallic glasses with different chemical composition N2 - Bulk metallic glasses (BMG) are amorphous metal alloys known for their unique physical and mechanical properties. In the present study, the formation of femtosecond (fs) laser-induced periodic surface structures (LIPSS) on the Zr-based BMGs Zr46Cu46Al8, Zr61Cu25Al12Ti2, Zr52.5Cu17.9Al10Ni14.6Ti5 (Vit105) and Zr57Cu15.4Al10Ni12.6Nb5 (Vit106) was investigated as a function of their different chemical composition. For this purpose, LIPSS were generated on the sample surfaces in an air environment by fs-laser irradiation (λ = 1025 nm, τ = 300 fs, frep = 100 kHz). The surface topography was characterized by scanning electron microscopy and atomic force microscopy. Moreover, the impact of LIPSS formation on the structure and chemical surface composition was analyzed before and after fs-laser irradiation by X-ray diffraction and X-ray photoelectron spectroscopy as well as by transmission electron microscopy in combination with energy dispersive X-ray spectroscopy. Despite the different chemical composition of the investigated BMGs, the fs-laser irradiation resulted in almost similar properties of the generated LIPSS patterns. In the case of Zr61Cu25Al12Ti2, Vit105 and Vit106, the surface analysis revealed the preservation of the amorphous state of the materials during fs-laser irradiation. The study demonstrated the presence of a native oxide layer on all pristine BMGs. In addition, fs-laser irradiation results in the formation of laser-induced oxide layers of larger thickness consisting of an amorphous ZrAlCu-oxide. The precise laser-structuring of BMG surfaces on the nanoscale provides a versatile alternative to thermoplastic forming of BMG surfaces and is of particular interest for the engineering of functional material surfaces. KW - Bulk metallic glasses KW - Femtosecond laser KW - Laser-induced periodic surface structures (LIPSS) KW - Chemical analysis KW - Oxidation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581799 DO - https://doi.org/10.1016/j.surfin.2023.103305 SN - 2468-0230 VL - 42 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-58179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scholtz, Lena A1 - Eckert, J. G. A1 - Graf, Rebecca T. A1 - Kunst, A. A1 - Wegner, Karl David A1 - Bigall, N. C. A1 - Resch-Genger, Ute T1 - Correlating semiconductor nanoparticle architecture and applicability for the controlled encoding of luminescent polymer microparticles N2 - Luminophore stained micro- and nanobeads made from organic polymers like polystyrene (PS) are broadly used in the life and material sciences as luminescent reporters, for bead-based assays, sensor arrays, printable barcodes, security inks, and the calibration of fluorescence microscopes and flow cytometers. Initially mostly prepared with organic dyes, meanwhile luminescent core/shell nanoparticles (NPs) like spherical semiconductor quantum dots (QDs) are increasingly employed for bead encoding. This is related to their narrower emission spectra, tuneability of emission color, broad wavelength excitability, and better photostability. However, correlations between particle architecture, morphology, and photoluminescence (PL) of the luminescent nanocrystals used for encoding and the optical properties of the NP-stained beads have been rarely explored. This encouraged us to perform a screening study on the incorporation of different types of luminescent core/shell semiconductor nanocrystals into polymer microparticles (PMPs) by a radical-induced polymerization reaction. Nanocrystals explored include CdSe/CdS QDs of varying CdS shell thickness, a CdSe/ZnS core/shell QD, CdSe/CdS quantum rods (QRs), and CdSe/CdS nanoplatelets (NPLs). Thereby, we focused on the applicability of these NPs for the polymerization synthesis approach used and quantified the preservation of the initial NP luminescence. The spectroscopic characterization of the resulting PMPs revealed the successful staining of the PMPs with luminescent CdSe/CdS QDs and CdSe/CdS NPLs. In contrast, usage of CdSe/CdS QRs and CdSe QDs with a ZnS shell did not yield luminescent PMPs. The results of this study provide new insights into structure–property relationships between NP stained PMPs and the initial luminescent NPs applied for staining and underline the importance of such studies for the performance optimization of NP-stained beads. KW - Quantitative spectroscopy KW - Energy transfer KW - Synthesis KW - Surface chemistry KW - Semiconductor quantum dot KW - Luminescence KW - Nano KW - Particle KW - Quantum yield KW - Lifetime KW - Quality assurance KW - Polymer particle KW - Quantum rod KW - Nanoplatelet PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-602206 DO - https://doi.org/10.1038/s41598-024-62591-1 VL - 14 SP - 1 EP - 16 AN - OPUS4-60220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -