TY - JOUR A1 - Petzet, S. A1 - Peplinski, Burkhard A1 - Bodkhe, S.Y. A1 - Cornel, P. T1 - Recovery of phosphorus and aluminium from sewage sludge ash by a new wet chemical elution process (SESAL-phos-recovery process) JF - Water science and technology N2 - The potential of a new wet chemical process for phosphorus and aluminium recovery from sewage sludge ash by sequential elution with acidic and alkaline solutions has been investigated: SESAL-Phos (sequential elution of sewage sludge ash for aluminium and phosphorus recovery). Its most innovative aspect is an acidic pre-treatment step in which calcium is leached from the sewage sludge ash. Thus the percentage of alkaline soluble aluminium phosphates is increased from 20 to 67%. This aluminium phosphate is then dissolved in alkali. Subsequently, the dissolved phosphorus is precipitated as calcium phosphate with low heavy metal content and recovered from the alkaline solution. Dissolved aluminium is recovered and may be reused as a precipitant in wastewater treatment plants. KW - Aluminium phosphate KW - Calcium phosphate KW - Phosphorus recovery KW - Sewage sludge ash PY - 2011 DO - https://doi.org/10.2166/wst.2011.682 SN - 0273-1223 VL - 64 IS - 3 SP - 693 EP - 699 PB - IWA Publishing CY - Bristol AN - OPUS4-24244 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peplinski, Burkhard A1 - Adam, Christian A1 - Reuther, H. A1 - Vogel, Christian A1 - Adamczyk, Burkart A1 - Menzel, Michael A1 - Emmerling, Franziska A1 - Simon, Franz-Georg T1 - First identification of the tridymite form of AlPO4 in municipal sewage sludge ash JF - Zeitschrift für Kristallographie N2 - Sewage sludge and sewage sludge ashes (SSA) are produced in huge amounts at municipal waste water treatment plants (WWTP) all around the world and have become an issue for many urbanized areas. To deal with this unceasing mass flow in an ecologically and economically responsible way a comprehensive chemical and structural characterization of all types of SSA is needed. X-ray powder diffraction (XRD) is one of the most promising analytical methods for this task. Although, there has been ample chemical evidence showing that many SSA contain aluminium phosphate as a major component up to now no aluminium phosphate or aluminium-rich mixed phosphate phase has been reported to be identified by XRD in a SSA produced at a mono-incineration facility. The outcome of the present com-bined XRD and Mossbauer spectroscopy investigation provides comprehensive evidence closing this gap for the first time. KW - Aluminium phosphate KW - AlPO4 KW - Tridymite KW - Sewage sludge ash KW - Incinerator KW - Ash PY - 2011 DO - https://doi.org/10.1524/zkpr.2011.0067 SN - 0044-2968 VL - 1 SP - 443 EP - 448 PB - Oldenbourg CY - München AN - OPUS4-24297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -