TY - CONF A1 - Barretto, T. A1 - Gentes, S. A1 - Braun, J. A1 - Averin, Anton A1 - Lecompagnon, Julien A1 - Stroncik, N. T1 - Automated non-destructive internal corrosion detection on radioactive drums (ZIKA) N2 - The aim of the ZIKA research project, funded by the BMBF funding program FORKA (FKZ:15S9446 A-C), is the automated detection of internal corrosion of radioactive drums using non-destructive testing (NDT). The newly gained findings will be combined with research results from the previous project EMOS (FKZ:15S9420), which dealt with the external damage of drums. Using NDT, internal corrosion and possible internal sources of damage can be identified before they become a safety-relevant issue. However, if internally sourced damages can be seen externally, the integrity of the damaged drum is no longer guaranteed, which has significant consequences. Therefore, early detection before integrity failure is of particular importance for interim storage facilities with low- and medium-level radioactive waste drums. T2 - Kerntechnik 2024 CY - Leipzig, Germany DA - 11.06.2024 KW - Corrosion detection KW - Non-destructive testing KW - Automated inspection system PY - 2024 SP - 1 EP - 5 AN - OPUS4-60322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Braun, Ulrike A1 - Lorenz, Edelgard A1 - Weimann, Christiane A1 - Sturm, Heinz A1 - Karimov, I. A1 - Ettl, J. A1 - Meier, R. A1 - Wohlgemuth, W. A. A1 - Berger, H. A1 - Wildgruber, M. T1 - Mechanic and surface properties of central-venous port catheters after removal: A comparison of polyurethane and Silicon rubber materials N2 - Central venous port devices made of two different polymeric materials, thermoplastic polyurethane (TPU)and silicone rubber (SiR), were compared due their material properties. Both naïve catheters as well as catheters after removal from patients were investigated. In lab experiments the influence of various chemo-therapeutic solutions on material properties was investigated, where as the samples after removal were compared according to the implanted time inpatient. The macroscopic,mechanical performance was assessed with dynamic, specially adapted tests for elasticity. The degradation status of the materials was determined with common tools of polymer characterisation, such as infrared spectroscopy, molecular weight measurements and various methods of thermal analysis. The surface morphology was an alysed using scanning electron microscopy. A correlation between material properties and clinical performance was proposed. The surface morphology and chemical composition of the polyurethane catheter materials can potentially result in increased susceptibility of the catheter to bloodstream infections and thrombotic complications. The higher mechanic failure,especially with increasing implantation time of the silicone catheters is related to the lower mechanical performance compared to the polyurethane material as well as loss of barium sulphate filler particles near the surface of the catheter. This results in preformed microscopic notches, which act as predetermined sites of fracture. KW - Thermoplastic polyurethane (TPU) KW - Silicone rubber (SiR) KW - Catheters KW - Central venous access port KW - Complication KW - Structure propertyrelationship KW - Mechanical testing PY - 2016 DO - https://doi.org/10.1016/j.jmbbm.2016.08.002 SN - 1751-6161 SN - 1878-0180 VL - 64 SP - 281 EP - 291 PB - Elsevier Ltd. AN - OPUS4-37178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Alexander, I. A1 - Braun, H.-J. A1 - Dettmann, T. A1 - Fimmen, H. A1 - Haberkamp, H. A1 - Katz, H. A1 - Krischok, Frank A1 - Otremba, Frank A1 - Pötzsch, Klaus-Michael A1 - Zentgraf, R. A1 - Putzschke, M. T1 - Bericht über den Ablauf und die Ursachen der Havarie des Tankmotorschiffes 'Waldhof' am 13. Januar 2011 auf dem Mittelrhein (Rhein-km 553,75) KW - Schiffshavarie KW - Gefahrgut-Tankschiff KW - Schwimmstabilität PY - 2013 IS - S-312.4/016 SP - 1 EP - 224 AN - OPUS4-27729 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. A1 - Ciesielski, M. A1 - Döring, M. A1 - Braun, Ulrike A1 - Knoll, Uta A1 - Schartel, Bernhard T1 - Effective halogen-free flame retardants for carbon fibre-reinforced epoxy composites N2 - DOPO-based flame retardants with tailored chemical structures are proposed for carbon fibre reinforced epoxy composites. Critical properties related to the fracture toughness are maintained, effectively allowing the use of such compounds in composites for demanding applications. KW - Fire retardancy KW - DOPO KW - Epoxy resin KW - LOI KW - UL94 PY - 2006 DO - https://doi.org/10.1007/s10853-006-0134-4 SN - 0022-2461 SN - 1573-4803 VL - 41 IS - 15 SP - 4981 EP - 4984 PB - Springer Science + Business Media B.V. CY - New York, USA AN - OPUS4-12641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Perez, R.M. A1 - Sandler, J.K.W. A1 - Altstädt, V. A1 - Hoffmann, T. A1 - Pospiech, D. A1 - Ciesielski, M. A1 - Döring, M. A1 - Braun, Ulrike A1 - Balabanovich, Aliaksandr A1 - Schartel, Bernhard T1 - Novel phosphorus-modified polysulfone as a combined flame retardant and toughness modifier for epoxy resins N2 - A novel phosphorus-modified polysulfone (P-PSu) was employed as a combined toughness modifier and a source of flame retardancy for a DGEBA/DDS thermosetting system. In comparison to the results of a commercially available polysulfone (PSu), commonly used as a toughness modifier, the chemorheological changes during curing measured by means of temperature-modulated DSC revealed an earlier occurrence of mobility restrictions in the P-PSu-modified epoxy. A higher viscosity and secondary epoxy-modifier reactions induced a sooner vitrification of the reacting mixture; effects that effectively prevented any phase separation and morphology development in the resulting material during cure. Thus, only about a 20% increase in fracture toughness was observed in the epoxy modified with 20 wt.% of P-PSu, cured under standard conditions at 180 °C for 2 h. Blends of the phosphorus-modified and the standard polysulfone (PSu) were also prepared in various mixing ratios and were used to modify the same thermosetting system. Again, no evidence for phase separation of the P-PSu was found in the epoxy modified with the P-PSu/PSu blends cured under the selected experimental conditions. The particular microstructures formed upon curing these novel materials are attributed to a separation of PSu from a miscible P-PSu–epoxy mixture. Nevertheless, the blends of P-PSu/PSu were found to be effective toughness/flame retardancy enhancers owing to the simultaneous microstructure development and polymer interpenetration. KW - Flame retardants KW - Phosphorus-modified polysulfone KW - Fracture toughness PY - 2007 SN - 0032-3861 SN - 1873-2291 VL - 48 IS - 3 SP - 778 EP - 790 PB - Springer CY - Berlin AN - OPUS4-14515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -