TY - JOUR A1 - Rzepka, M. A1 - Bauer, E. A1 - Reichenauer, G. A1 - Schliermann, T. A1 - Bernhardt, B. A1 - Bohmhammel, K. A1 - Henneberg, E. A1 - Knoll, Uta A1 - Maneck, Heinz-Eberhard A1 - Braue, W. T1 - Hydrogen Storage Capacity of Catalytically Grown Carbon Nanofibers JF - The journal of physical chemistry / B N2 - In 1996, R. T. K. Baker, and N. M. Rodriguez claimed to have synthesized a new type of carbon nanofiber material capable of storing large amounts of hydrogen at room temperature and pressures above 100 bar, thus making it a powerful candidate for a very efficient energy storage system in mobile applications. Consequently, many scientists all over the world tried to test and verify these findings, however, with partly inconsistent results. We present here for the first time independent hydrogen storage measurements for several types of nanofibers, both synthesized by our group following precisely the specifications given in the literature as well as original samples supplied by Rodriguez and Baker for this study. The hydrogen storage capacities at room temperature and pressures up to 140 bar were quantified independently by gravimetric and volumetric methods, respectively. No significant hydrogen storage capacity has been detected for all carbon nanofibers investigated. KW - Energy storage KW - Hydrogen storeage KW - Storage capacity KW - Carbon nanofiber KW - Carbon nanofiber synthesis PY - 2005 DO - https://doi.org/10.1021/jp051371a SN - 1520-6106 SN - 1520-5207 SN - 1089-5647 VL - 109 IS - 31 SP - 14979 EP - 14989 PB - Soc. CY - Washington, DC AN - OPUS4-13763 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -